Securing Global DNA Synthesis without Disclosing Information Hazards


Printing custom DNA sequences is essential to scientific and biomedical research, but the technology can be used to build plagues as well as cures. Just as ink printers recognize and reject attempts to counterfeit money, DNA synthesizers and assemblers should deny requests to make viral DNA that could be used to ignite another pandemic. There are three complications. First, we don't need to update printers to deal with newly discovered currencies, whereas we’ll constantly learn of new viruses and other biological threats. Second, anti-counterfeiting specifications on a local printer can’t be extracted and used to help terrorists – unlike DNA blueprints for hazards. Third, a list of all the DNA orders placed by a biotech company could paint a detailed portrait of its R&D program, so any screening system must protect the privacy of each customer’s orders as reliably as their banks safeguards their finances. Cryptography, the foundation of modern computer security, can do the same for synthesis screening. We will discuss SecureDNA, an internationally developed and fully automated system capable of securely screening all DNA synthesis that will be made freely available by the end of 2023. Speaker(s): Kevin Esvelt, Virtual: