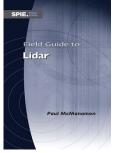
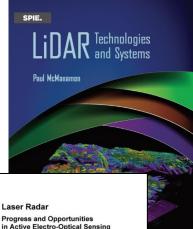


Lidar Technology and Systems

Dr. Paul McManamon





Some References (1)

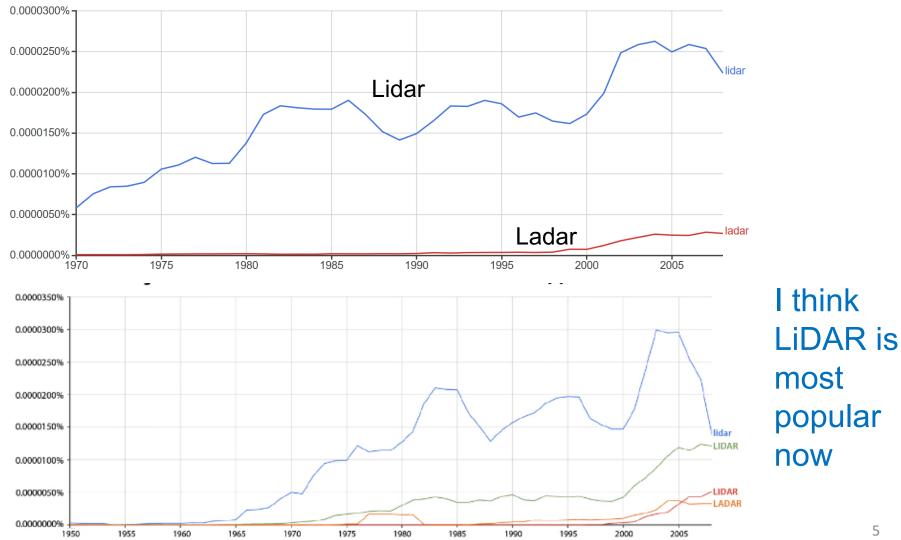
- Lidar Technologies and Systems Paul McManamon.
- Field Guide for Lidar Paul McManamon
- National Academy of Sciences, NAS, Report
 - <u>http://www.nap.edu/catalog.php?record_id=18733</u>
 - Laser Radar: Progress and Opportunities in Active Electro-Optical Sensing (2014)
- Review article on ladar (Paul McManamon, June 2012, Optical Engineering)
- Introduction to Laser Radar by Al Jelalian
 - Older book, mostly CO₂ ladar

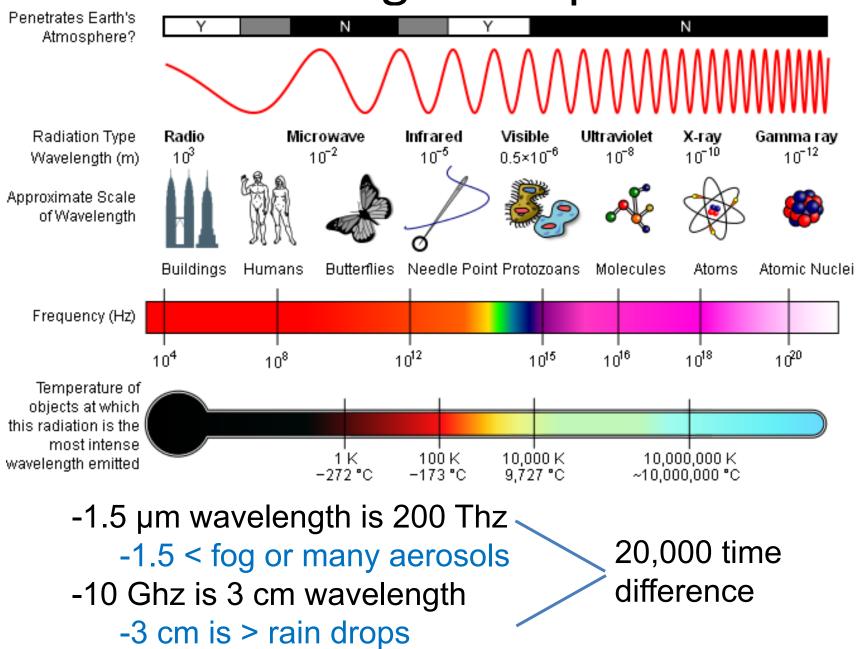
THE NATIONAL ACADEMIE Woshington, D.C. www.nop.edu

Some References (2)

- InGaAs Avalanche Photodiodes for Ranging and Lidar Huntington, Andrew Huntington
 - Very good on LMAPDs
 - Optical Detection Theory for Laser Applications by Greg Osche
 - Fairly comprehensive on detection
- Laser Remote Sensing by Takashi Fujii and Tetsuo Fuluchi
 - Chapter 7 by Sammy Henderson is from p469 to p722
- Direct detection LADAR Systems
 - Richmond and Cain

Ladar names


LIDAR – Light Detection And Ranging


- Generally used with atmosphere or chemical vapor detection
- Used by the National Geospatial Intelligence Agency, NGA
- Usually used for commercial applications
- LADAR LAser Detection And Ranging
 - Historically used with hard targets
 - Adopted by NIST as the standard term for active EO Sensing
- Active EO Sensing, Laser Radar, Optical Radar, Laser Remote Sensing
- For Reference
 - RADAR RAdio Detection And Ranging

Now I swim with the tide (lidar)

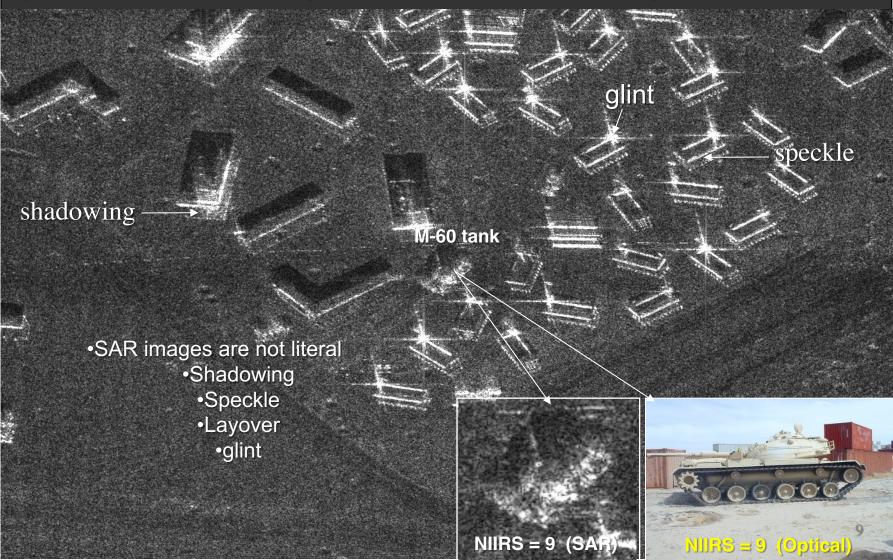
Google Ngrams up to 2008

Electro-magnetic Spectrum

- EO has excellent real beam resolution
 - 20,000 time radar, comparing 3 cm, 10 Ghz,
 to 1.5 μm, 200 Thz
 - -Lidar signature will look closer to natural
- Ladar controls the illumination
 - -Can use Near IR wavelength at night
 - -Can measure range and velocity
 - -Can detect field.
 - Can structure illumination

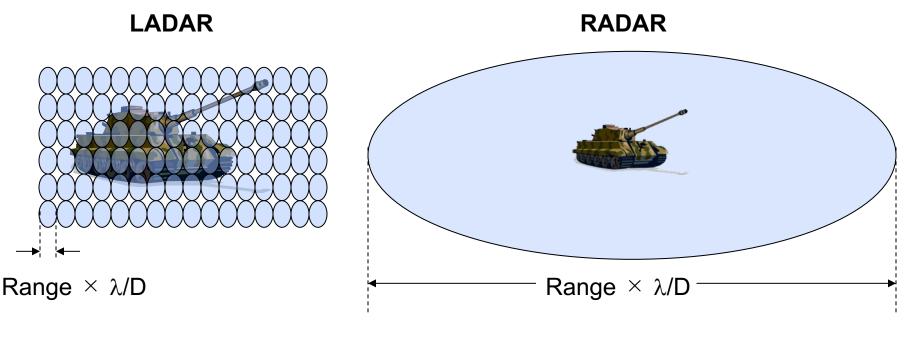
Sensor Context Summary

Radar is a great Search Sensor


- Radar can see through clouds, but is a lousy ID sensor
- Hyperspectral Passive EO helps search as well
- Lidar has control of the illumination, similar to microwave radar
- Lidar is a great for ID
 - Lidar can go to longer range than most passive EO sensors
 - Bringing our own photons
 - Lidar can be 3D, for great hand off and re-acquisition
 - Lidar can provide many discriminates

SAR has good weather penetration, but SAR does not provide literal images required for weapons release authorization

Lynx SAR: 4" Resolution Image of USMC Urban Warfare training site NIIRS = 9 (SAR)

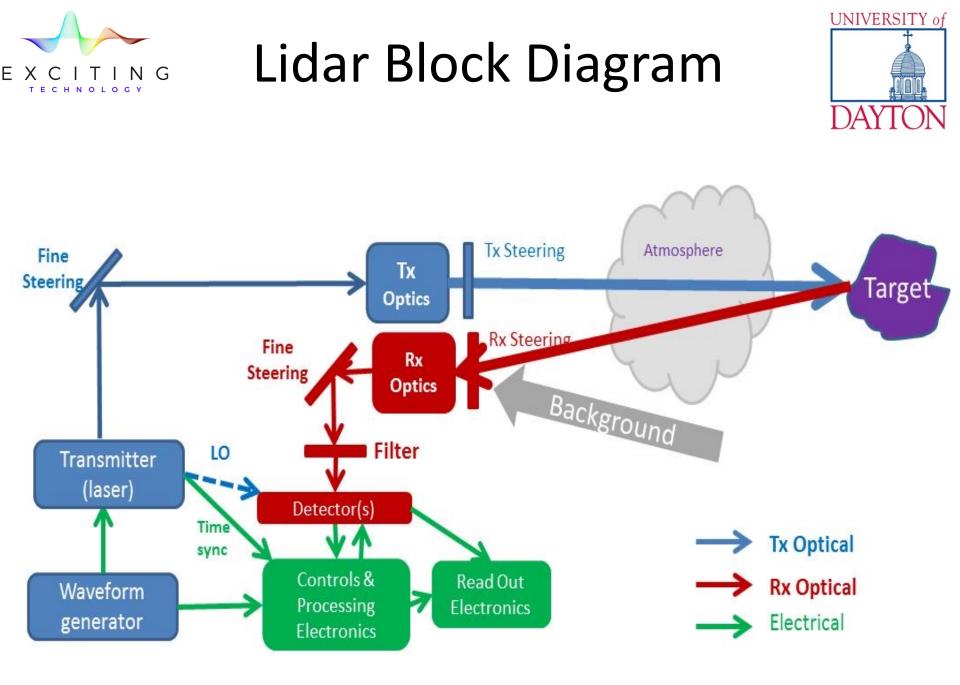


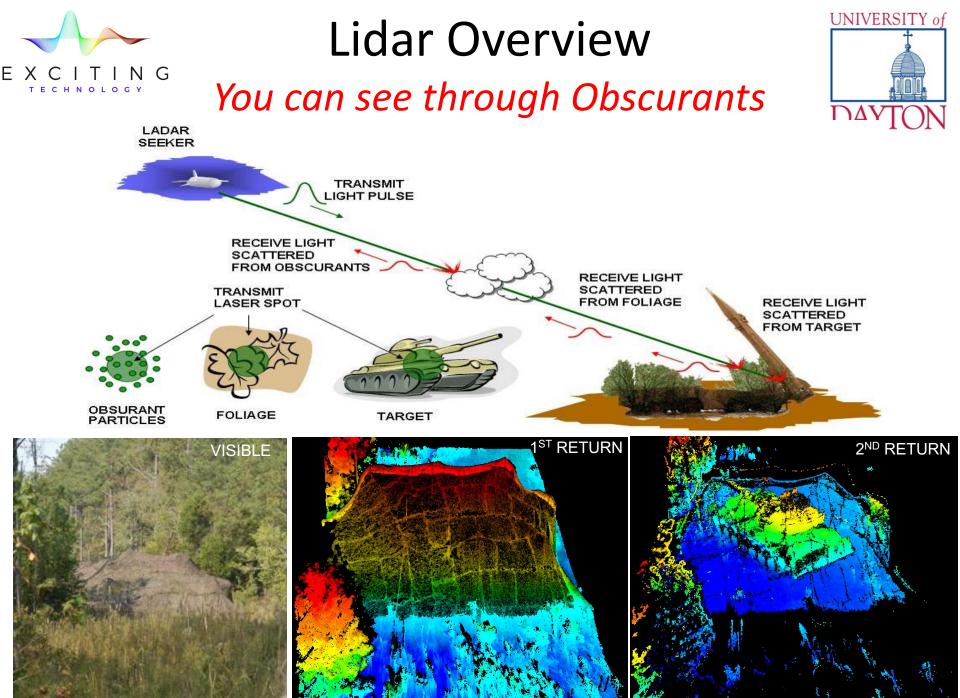
Lidar vs. Radar: Many Similarities — and Many Fundamental Differences

Example: Single vs. multiple footprint patches

In radar, a single real aperture patch covers a large area, usually large enough to cover the whole target area of interest. In ladar, the target area must be imaged by "mosaicing" real aperture patches together.

Real Aperture footprint = Range $\times \lambda/D$




One simple Lidar Description

UNIVERSITY of

- Need a laser source, some optics, and a receiver DAYTON
- Transmits through a medium
 - The atmosphere, water, space
- Bounces off of an object
- Have to process the received data
- Generally display an image (2D or 3D)
- Can measure many discriminants

Major Components in Lidar

- Transmitter
 - Now days this is a laser
- Receiver
 - Can be one detector, or an array
- Optical Aperture(s), and beam steering
 - Need to point the transmitter and receiver at the object to be detected
- Processing
 - Gathering data does not make an image, or information.

What a lidar detects?

Direct Detection is currently focused on Geometry

UNIVERSITY of

- 1D, 2D, 3D
- Surface characteristics
 - Color can be direct detection
 - Roughness
 - polarization can be direct detection
- Plant, or surface, noise
 - Vibration / sounds
 - signatures associated with piston or turbine engines
 - Electric transmission
 - Machine noise
- Effluents can detect effluents, but motion sensitivity will be limited
 - exhaust air
 - Gases
 - waste heat
- Gross motion
 - translation
 - rotation
 - Can be motion of air or effluents

Coherent ladar adds a lot of functionality¹⁵

Bi-Static Vs Monostatic

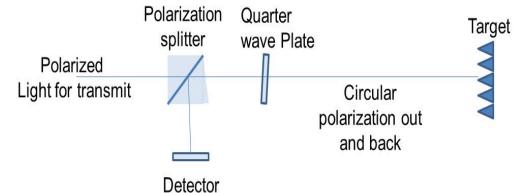
Bi-static has separate transmit and receive apertures

llumination

Receiv

• Monostatic a single aperture T/R aperture

- Monostatic can be smaller, lighter, cheaper
- For flash ladar the transmit aperture is much smaller, so does not have a big impact
- Multiple Input, Multiple Output, MIMO, ladars will be bi-static
- Bi-static has almost no isolation issues
 - Only atmospheric backscatter


Targe

Transmit/Receive Isolation

- A ladar can be bistatic or monostatic
- Bistatic lasers only have an isolation issue with backscatter from the air
- Temporal isolation can be used
 - For pulsed lasers you can turn of the detectors when the laser is emitted, eliminating backscatter
- Polarization is the baseline isolation approach

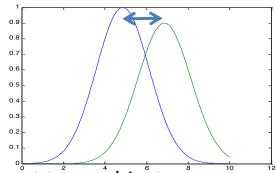
Lidars can Make Use of Volume Scattering

- Wind Sensing bounces laser energy off of aerosols or air.
- Chemical Sensing can bounce light off of the chemicals
 - Or can bounce light off of the ground, and measure absorption at different wavelengths while going through the air/material
- A LIBs, Laser-Induced Breakdown Spectroscopy, Lidar is in the Curiosity Spacecraft on Mars
 - Vaporizes some material, and then measures what it is

Surface Scattering

- Target ID for the military
- 3D lidar for driverless cars
- 3D mapping
 - Forestry lidar to measure the mass of trees
 - Archeology lidar to map
 - Utility line mapping
 - Transportation/road asset mapping
 - Urban infrastructure
 - Planets or space debris
 - Could be navigation
- Lidar for Robot, or UAVs
- Microsoft Kinect game machine
- Obtaining data for 3D printing

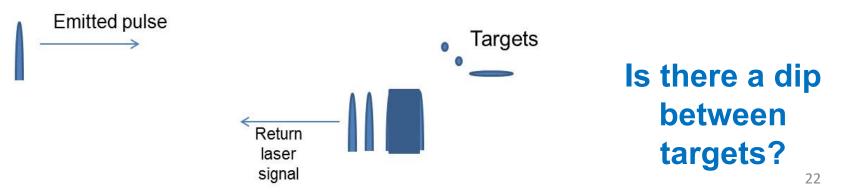
Current EO landscape


- Deployed Passive Thermal Imagers
 - $-3-5 \,\mu m$ for newer systems
 - $-8-12 \,\mu m$ for older systems
- Active EO
 - 2D range gated Active
 - 3D active
 - Commercial 3D mapping lidars are popular
 - Self Driving cars
 - 3 companies have flown synthetic aperture lidars
 - Microsoft Kinect for gaming

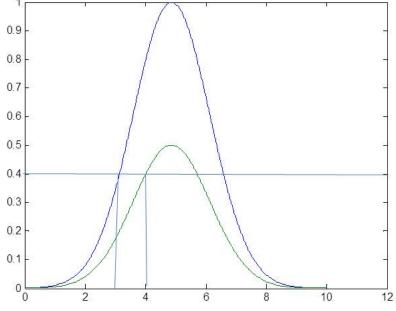
Resolution and Accuracy

- Range Resolution
 - Quantifies the ability to detect two objects separated in range along a single line of sight.
 - Limited to c/(2×B) where c is the speed of light and B is the system bandwidth

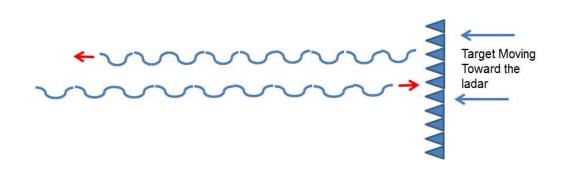
- Range Precision
 - Quantifies the relative uncertainty of a range measurement to an object
 - Limited by the range resolution and the signal-to-noise ratio of the measurement, and can be significantly better than the range resolution.
- Range Accuracy
 - Quantifies the degree to which a range measurement yields the "true value" of the absolute range.
 - Depends on range precision as well as systematic errors (e.g., clock rate, drift, timing offsets, etc.)
- This is always a big confusion



Range Resolution of Lidar


- Range is measured by the speed of light and time $R = \frac{c\Delta t}{2}$
- Factor of 2 comes because light goes out and back
- Measurement precision has to do with a convolution of the "pulse" and the target

Range Precision Issues


- Amplitude of return pulse
 - Higher amplitude can appear closer
 - Ratio processing can solve this issue
 - E.g half max to measure range
 - Measuring front and back of a pulse can also resolve this issue

Velocity Resolution of lidar

- Can measure Doppler shift
 - Usually use a heterodyne ladar
- $\Delta f = \frac{2V}{\lambda}$
- Can also measure range multiple times.
 - Police lidars are direct detection, and use multiple range measurements.

JNIVERSI

Unambiguous Range

• The range for which you only have one pulse in the air at a time.

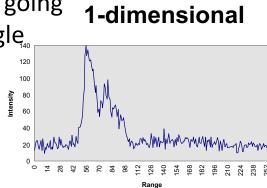
$$R_{unambig} = \frac{c\tau}{2}$$

• Can extend the unambiguous range by slightly changing the pulse repetition frequency.

$$\tau$$
 $\tau + \Delta t$ $\tau + 2\Delta t$ $\tau + 3\Delta t$

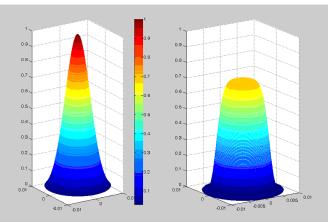
Diffraction

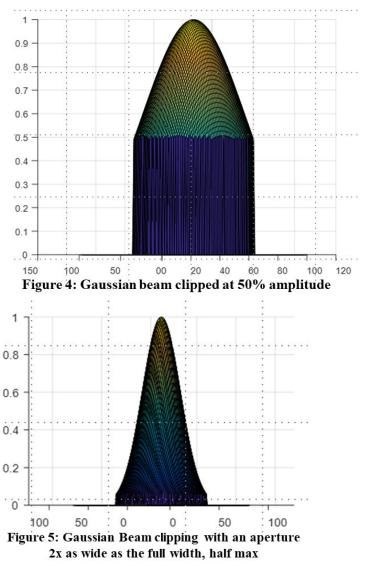
- There are multiple different conventions for bear AYTON width
- I tend to use the full width, half max, beam width $\mathcal{G} \approx \frac{\lambda}{D}$
- Where ϑ is the diffraction limited angle, D is the aperture diameter, and λ is wavelength
- Some people use – Half angle to zero $\mathcal{G} \approx 1.22 \frac{\lambda}{D}$
- Where ϑ is the angular half beam width at the zeros for a circular aperture


UNIVERSI

EO systems not Limited by Diffraction

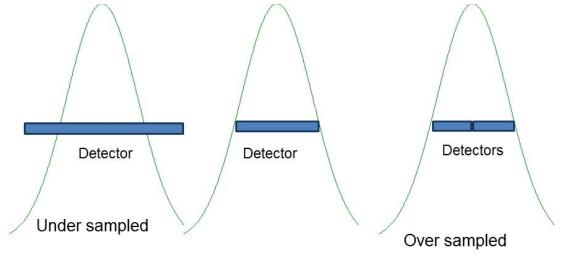
- Synthetic Aperture Lidar
 - Will be able to make a literal image at long range (goal of radar ranges)
 - No inherent range limitation
 - Very new
 - Currently not a small system
- High Range Resolution Lidar
 - 1D Lidar
 - For airplanes the nose is usually pointed where it is going
 - Might as well have 3D, with range limited angle/angle.
- Vibration Lidar
 - Will be able to ID objects that are vibrating
 - No inherent range limitation
 - Not a literal image, but could "hear" the target
 - e.g hear a turbine vs. a hear a diesel
- Polarization & Color
 - Mostly limited by engineering and cost. It can mature relatively quickly




Can have clipping with a Gaussian beam transmitter

• Full width, half max

- 2x full width, half max
- Super Gaussian beams
 Clip less

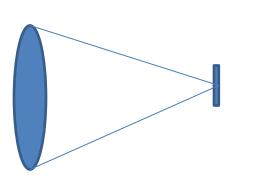


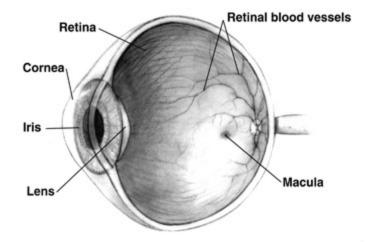
Angular Sampling

- Can under sample, as in the detector to the DAYTON left
- Most EO systems are designed for the detector Angular Sub-tense (DAS) to match the Point spread function (middle)
- We can over sample (as on the left)

Lidar Image Stabilization

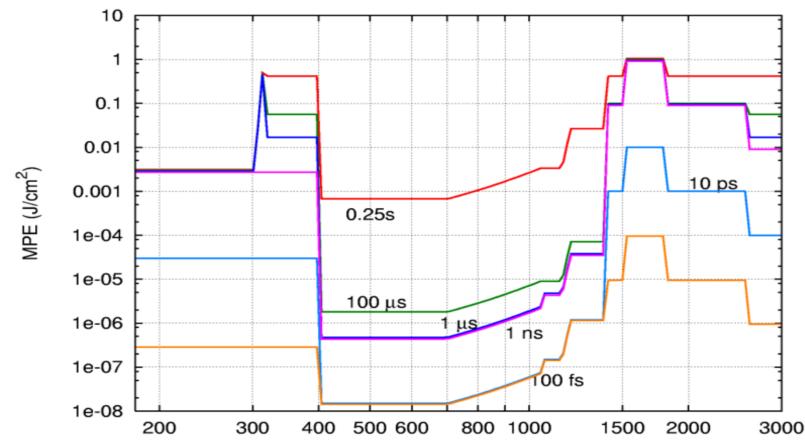
- Have to stabilize the image to a fraction of
 - The detector Angular Sub-tense (DAS) for single detectors
 - The array size in angle space for flash detectors
- True flash ladars do not need as much stabilization
- GMAPDs a sort of flash, but require as many as 50 pulses in coincidence detection




Eye Safety

Water absorbs light < 400 nm and > ~ 1400 nm

- Damage threshold much lower if the light can be concentrated on the retina
 - If a laser does not focus well it is not as dangerous
 - Focusing can magnify intensity 1000 to 10,000 times
- Usually use energy in 10 seconds for calculations of eye safety
 - Scanning reduces energy hitting the eye



Eye Safety

- Chart shows relative Eye safety threshold
 - 1 j/cm² @ 1.5 μm , and 1E-6 j/cm² @ .9 μm for nsec to μsec pulse width

32

Laser Safety Classes

- Class 1
 - Safe, unless magnified
- Class 2
 - 400-700 nm only
 - Safe because of blink reflex. Won't blink if you don't see it
 - 1 mw cw or less
- Class 3
 - 5 mw cw or less many laser pointers
 - Safe if handled properly
 - Class 3B may need goggles. Can be up to 30 mw
- Class 4
 - Can burn the skin, as well as damage the eye
 - Some laser pointers are more then 5 mw a lot of them you order on the web are. Be careful !!

Military Object Identification

Landscape

- Radar can detect objects at long range
- Radar imagery cannot be used to make kill decisions in restrictive rules of engagement
 - Radar can ID under liberal rules of engagement
- EO is usually used for ID (a kill decision)
- 278 Km line of sight from 20,000 ft altitude
 - Radar can detect out to the LOS
 - 3-5 mm FLIR ID range is 6.4 Km*
 - 1.55 mm ID range is 14.5 Km*

*Assume 15 cm resolution required for ID, and 15 cm diameter aperture Major disconnect between detection & decision level ID ranges

Detection

Recognition

Cross Section Definitions

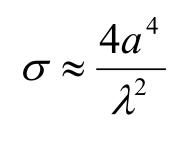
- Traditional Optical Cross Section
 - scattering is near Lambertian, and reflected light is reflected into π steradians.
 - π steradians as the effective solid angle of reflected light by assuming a cosine distribution reflecting light over a hemisphere (2π steradians)
- Radar Cross Section
 - Scattering of light over 4π steradians from a small round gold ball
 - Radar will flow around a small ball
- Factor of 4 difference in definitions

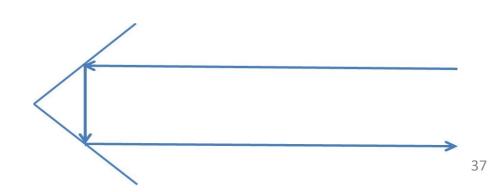
Lambertion Cross Section

 Cross section for a given receiver pixel is limited by the area of a pixel

 $\sigma = \rho_t * DAS_{az} * DAS_{el} * R^2$

- where d = cross range resolution, ρ_t is the reflectance of the area
- Higher spatial resolution will mean each detector sees a smaller area and a smaller cross section.


 $\frac{A_{illum}}{M_{illeff}} = \frac{\eta_{illeff} N_{Det}}{N_{Det}}$ σ



Corner Cubes

- The cross section of a corner cube is much larger than other surfaces because light hitting the corner cube is reflected back toward the source.
 - It is like an antenna with gain.
 - Dihedral, two planes meeting
 - Trihedral, concentrating light in two dimensions.

Coherence

A word to avoid if by itself !

• Spatial coherence

- Has to do with beam spread
- Diffraction limited is the best you can do
 - Means a single laser mode
- M² of laser is relevant
- Has to do with how your resonator is built
 - Does it favor the 0,0 mode or not?

Temporal Coherence

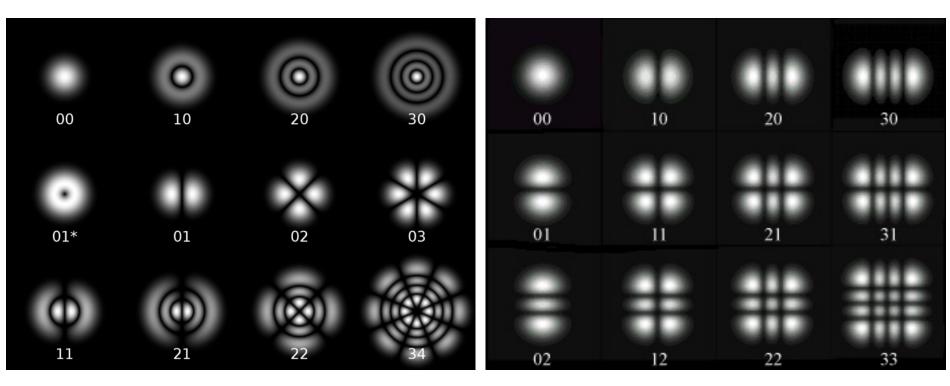
- Temporal coherence tells us how monochromatic a source
 - Has to do with laser bandwidth
- Coherence length of laser is a measure of temporal coherence
 - How far does the laser have to travel before there is a full wavelength of phase shift between the extreme frequencies in the laser?
 - Coherence length is speed of light divided by bandwidth
 - Phase is lost after one coherence length
 - No interference anymore
- Need narrow line width for heterodyne laser radar
- Have Speckle when use narrow line width
 - Speckle is interference!

Coherence length Is one over the Line width time the Speed of light

Coherence Length

Has to do with Temporal Coherence

Laser Coherence Laser bandwidth length 1 Khz 300 Km 10 Khz 30 Km 100 Khz 3 KM 1 Mhz 300 meters 10 Mhz 30 meters 100 Mhz 3 meters 1 Ghz 30 cm 10 Ghz 3 cm



Laser Spatial Modes

Equation is p 330 of Siegman

Cylindrical modes -Laguerre-gaussian

Rectangular Modes

Most ladar Apertures are round

Line width in frequency

In frequency lasers are very broad band
 – For 1.55 μm

Δ λ (nm)	Δf (Ghz)
0.1	13
1	126
10	1265
100	12650

$$B = -\frac{c}{\lambda^2} \Delta \lambda$$

The Far Field is just a Fourier Transform Away

- We receive in the pupil plane.
- We use a lens, and the focus is the image plane
 - If you know phase and angle you can focus the image electronically by imposing a phase parabola
- The far Field can be far away

– Fresnel parameter S = $D^2/(4\lambda)$

\)	D (cm)	lambda (microns)	far field(Km)
	10	1.55	1.61
	15	1.55	3.63
	20	1.55	6.45
	50	1.55	40.32

Types of Lidar (Direct Detection)

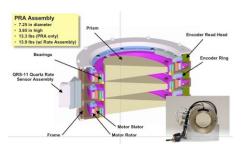
- 1D lidar (range only)
- Tomographic lidar
- 2D lidar Range Gated Active Imaging
- 3D lidar
 - Scanning
 - Flash
- Active Multispectral
- Polarization
- Laser-Induced Breakdown Spectroscopy, LIBs
- Laser-Induced Fluorescence (LIF)

Types of Lidar (Coherent Lidar)

- Laser Vibrometers
- Range Doppler Imaging Lidar
- Speckle Imaging Lidar
- Aperture Synthesis based Lidar
 - -Synthetic Aperture Lidar, SAL
 - -Inverse Synthetic Aperture Lidar, ISAL
 - Multiple Input, Multiple Output, lidar, MIMO

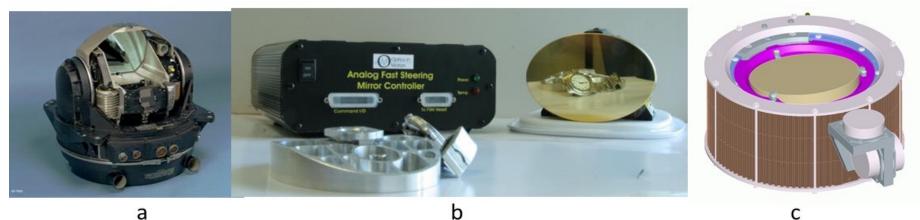
Hard Target Laser Radar

- EXCITING Modes
 - •High range resolution, 1D Ladar
 - •2D Laser Radar
 - •3D Laser Radar
 - -Scanning can cover more area
 - -Flash imaging (freeze motion)
 - Vibration Laser Radar
 - Synthetic Aperture Laser Radar –High resolution at radar type ranges
 - Can add discriminants to any of the above
 - –Polarization
 - -Multi-spectral
 - -Maybe even speckle characteristics

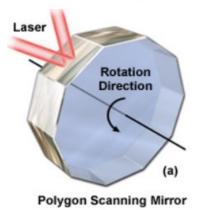


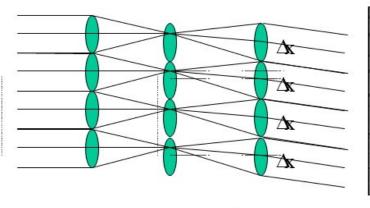
what are the limits of current practice?

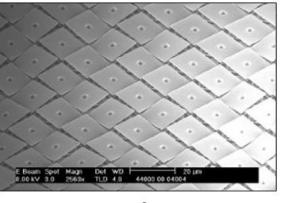
- Gimbals are used for many military systems
 - They are expensive, bulky, heavy, and complex
- Risley Prisms are smaller, and can be flush
 - Pointing is complicated (easy to make Lissajous figures). Risley devices can be heavy, and have low optical quality
- Often Optical Satellites are body pointed using reaction mass
 - Can take 10s of seconds, & uses limited reaction mass
- DARPA has pursued chip scale OPAs, but scaling is a huge issue
- Small apertures may use MEMS, fast steering mirrors, or polygons



- Gimbals
- Fast Steering Mirrors (FSMs)
- Risley Prisms / Risley Gratings
- Rotating Polygons
- Small motion based beam steering
 - -MEMs devices
 - -Lenslet based beam steering
- Decentered lens Based Beam steering




- Many good mechanical approaches
 - Non-mechanical approaches will have to replace mechanical



e

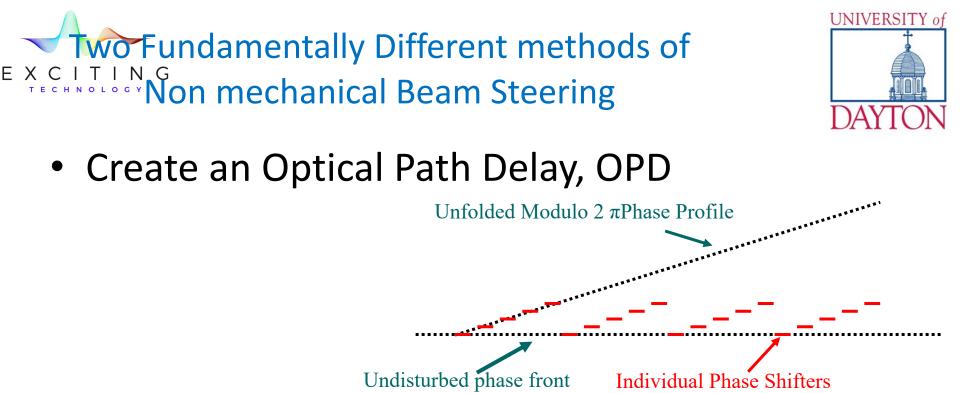
C

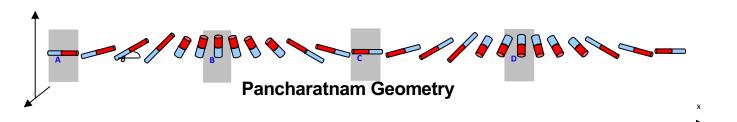
Optical Phased Arrays

The Vision (a 35 year old chart)

- Eliminate Gimbals
 - Heavy
 - Expensive
 - Slow
- Solid state solution
 - Fast
 - Conformal
 - Cheap
 - New capabilities
 - Focus / defocus
 - Multiple beams
 - Random access
- Steer Active & Passive Sensors

Some History of Non-mechanical EXCLITING Beam Steering


- I started pursuing non-mechanical beam steering in 1985
 - Had our 1st 3 contracts in 1987
 - Two using liquid crystals (Raytheon and HRL)
 - One using acousto-Optical (Westinghouse)
- Raytheon made a 4cm device on 1 micron centers about 1990
- BNS started selling commercial devices in late 90's
 - 1x4096 OPA, on 1.8 micron pixel pitch. The device is .74 cm x
 .74 cm , won 2000 circle of excellence award
 - 1x 12,228 on a 1.6 micron pitch. It took up to 13.2 volts to address it, and was 19.2 by 19.2 mm in size in 2003
- In 2005 Raytheon used Holographic Gratings with LCs to steer in a 45 degree cone
- I wrote a 2009 review article with LCs, MEMs, electro-wetting, Polarization Birefringent Gratings, and VCOPA
- Polarization Birefringent Gratings are at 15 cm in size


My Review Papers

- 1996 Optical phased array technology: PF McManamon, TA Dorschner, DL Corkum, LJ Friedman, DS Hobbs, ...Proceedings of the IEEE 84 (2), 268-298 (885 citations)
- 2009 A review of phased array steering for narrow-band electrooptical systems, PF McManamon, PJ Bos, MJ Escuti, J Heikenfeld, S Serati, H Xie, ...Proceedings of the IEEE 97 (6), 1078-1096 (510 citations)
- 2019 Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology: P McManamon: Optical Engineering 51 (6), 060901

 Create a Phase Delay. Pancharatnam Geometry rotates phase, so no resets are required

