UCI

Groundbreaking Millimeter-Wave Research Enabling 100 Gigabit-per-Seconds Wireless Communications

Payam Heydari NCIC Labs, University of California, Irvine

Distinguished Microwave Lecture; Washington DC Chapter, MTT-S 2019

NANOSCALE COMMUNICATION IC LAB

University of California, Irvine

General Trends

• Global forces in advancing communication technology

1. World population, communication users, continues to grow

General Trends

Global forces in advancing communication technology

- 1. World population, communication users, continues to grow
- 2. Users constantly demand for larger multimedia contents
- 3. New applications are more contentintensive \rightarrow high data rates

General Trends

Global forces in advancing communication technology

- 1. World population, communication users, continues to grow
- 2. Users constantly demand for larger multimedia contents
- 3. New applications are more contentintensive \rightarrow high data rates

What does theory say? RF Power Noise Power Spectral Capacity $C = BW \log_2(1 + S / N)$ AWGN Channel

- The wider the bandwidth (BW), the higher the capacity
- How about increasing bandwidth per user?
 - > What are the exiting challenges?
 - \succ Can higher data-rate only be achieved by increasing BW?

- TX/RX RF chains must satisfy target performance over wide BW, i.e.,
 - > **TX:** high gain, high TX power and efficiency, high linearity, low EVM
 - RX: low RX sensitivity, low noise and high gain, high blocker tolerance
- **Operation** Difficult to maintain high performance over wider BW
 - \succ In-band noise integration \rightarrow low SNR
 - \succ Device frequency-dependent characteristic and nonlinearity \rightarrow large distortion

- Digital modulation involves transforming the binary bits to digital switching of a signal attribute
 - > Amplitude: on-off-keying (OOK) \rightarrow switching time is T_b
 - > **Phase:** phase shift-keying (PSK) \rightarrow constant amplitude
 - > **Frequency:** frequency shift keying (FSK) \rightarrow constant amplitude
- To preserve signal quality, the DAC/ADC sampling rate should be
 - > Twice the baud-rate $(1/T_b)$ for direct conversion architecture
 - Four times the baud-rate for low-IF architecture
- **Example:** For an OOK modulation to achieve 10 mega-bit-per-second data communication, the single-sideband baseband bandwidth should be 10 MHz
- Basic binary modulations are not very BW efficient

Question 1: how about defining a symbol represented by multi-bit binary code? Question 2: how about using both amplitude and phase to generate these multi-bit binary codes?

High Data-Rate over Smaller BW Modulation/Demodulation

Question 1: how about defining a symbol of multi-bit binary code?

Question 2: how about using both multi-levels of amplitude and smaller phase angles than 0-180 to generate these multi-bit binary codes?

High Data-Rate over Smaller BW Modulation/Demodulation

☺Increasing the modulation complexity (order) results in more spectrally efficient communication

> Now, the data rate can be increased for given specific bandwidth

• **Example:** 16QAM modulation scheme is four times more spectrally efficient than BPSK or OOK

 \bigcirc More bang for the buck \rightarrow broadcasting larger content over a given BW

Question: If so effective, why can't we keep increasing the modulation order?

> 1024QAM, 2048QAM, and so on!

Challenges:

- Increasing the modulation order requires
 - 1. Lower local oscillator phase noise
 - 2. Higher resolution data converters
 - 3. Higher linearity RF chain

Observation: extremely difficult to increase modulation order beyond 1024QAM

Higher Carrier Frequency for Higher Capacity Observation 1: Impractical to increase modulation order beyond 1024QAM Observation 2: the RF band 700 MHz – 6 GHz is heavily congested

Question: How can we further increase the data rate for emerging data intensive applications?

• How about increasing the carrier frequency?

(:)

 (\odot)

(:)

All Analog Phased Array

The antenna size and spacing decreases, enabling larger array size

frequency range 30 – 300 GHz

Increasing frequency towards mm-wave

The passive size decreases proportionally

Wide BW with small fractional BW

© Multi-antenna architectures

1x2 dipole antenna array at 210 GHz [Wang- ISSCC 2013] and [Wang - JSSC2014]

• Wider Instantaneous Bandwidth (BW)

- 30-300 GHz mm-Wave (EHF) band
- Which part of the band to target for?
- How to fully utilize the BW ?

High-Order Modulation

- OOK, ASK, BPSK, QPSK: low spectral efficiency
- BPSK, 16QAM, 64QAM, etc: high complexity
- What are the bottlenecks ?

Continuous BW and Efficiency Trade-off

- Higher frequency for more BW
- Limited by active devices
 - □ Low power-gain
 - High noise figure
 - High power consumption
- Commercial Silicon Tech
 - □ f_{MAX}: 250 370GHz

 \square Operate below f_{MAX}/3 - f_{MAX}/2

Prior-Art High-Speed Receivers

Conventional zero- or low-IF architectures

- **(C)** incapable of addressing <u>unresolved</u> challenges in BB/mixed-signal parts
- **Require power-hungry high-speed high-resolution ADCs**

- Current ADC-less receivers
 - ☺ Only limited to basic modulations (OOK, QPSK)
 - ☺ For ultra-high-speed require very high center frequency and bandwidth

- Conventional high-speed zero- or low-IF architectures
 - Incapable of addressing <u>unresolved</u> challenges in BB/mixed-signal
 - Require power-hungry high-speed-resolution (high SFDR) DACs

- Conventional DAC-less Transmitters
 - Only limited to basic modulations (OOK, QPSK)
 - Sor ultra-high-speed require very high center frequency and bandwidth

High-Speed Receivers: ADC/DAC Bottleneck

\odot Time-interleaving

- For high sampling-rates (> 100+ MHz)
 Inter-channel gain/timing mismatches
- 64GSa/s, 5.95-ENOB, 1000 mW! [Cao - ISSCC 2017]

○ Technology down-scaling

Energy efficiency improves
 Resolution (SNDR) limited

ℬ Relative noise floor is saturated at −160dB/Hz

= -(SNDR + 10log(BW))

Solution High-Order Direct (De-)Modulation

Statement: Design of integrated ultra-high-speed RF-to-Bits TRXs using traditional architectures is nearly impossible

A Paradigm Shift

High-order *direct* (de-)modulation in RF domain ⓒ Removes power-hungry ADC and DAC ⓒ Relaxes the complexity of the BB unit ⓒ Achieves high spectral efficiency

Solution High-Order Direct (De-)Modulation

<u>A Paradigm Shift</u>

High-order *direct* (de-)modulation in RF domain © Removes power-hungry ADC and DAC © Relaxes the complexity of the BB unit © Achieves high spectral efficiency

- Peyman Nazari, Saman Jafarlou, and Payam Heydari, "A CMOS Two-Element 170-GHz Fundamental-Frequency Transmitter with Direct RF-8PSK Modulation," to appear in *IEEE J. Solid-State Circuits*, vol. 55, 2020
- Huan Wang, Hossein Mohammadnezhad, and Payam Heydari, "<u>Analysis and Design of High-Order QAM Direct-Modulation Transmitter for High-Speed Point-to-Point mm-Wave Wireless Links</u>," *IEEE J. Solid-State Circuits*, vol. 54, no. 11, pp. 3161 3179, Nov. 2019
- Hossein Mohammadnezhad, Huan Wang, Andreia Cathelin, and Payam Heydari, "<u>115-135 GHz</u> <u>8PSK Receiver Using Multi-Phase RF-Correlation-Based Direct-Demodulation Method</u>," *IEEE J. Solid-State Circuits*, vol. 54, no. 9, pp. 2435 – 2448, Sept. 2019

IEEE JOURNAL OF SOLID-STATE CIRCUITS

A CMOS Two-Element 170-GHz Fundamental-Frequency Transmitter With Direct RF-8PSK Modulation

Peyman Nazari¹⁰, Member, IEEE, Saman Jafarlou, Student Member, IEEE, and Payam Heydari¹⁰, Fellow, IEEE

Abstract-A CMOS 170-GHz fundamental-frequency transmitter (TX) realizing the 8PSK modulation scheme directly in the RF domain is presented. The use of direct RF modulation obviates the need for high-resolution high-speed mixed-signal blocks. The proposed architecture extends the conventional quadrature modulation by performing additional phase modulation on I and Q components of the LO signal, which helps increase modulation order. The TX employs highspeed switchable phase shifters to achieve LO phase modulation and fundamental-frequency over-neutralized power amplifiers to drive an integrated two-element tapered dipole antenna array. Fabricated in a 65-nm CMOS process $(f_T/f_{max} = 230/260 \text{ GHz})$, the RF-8PSK TX prototype occupies $3.2 \times 2.8 \text{ mm}^2$ of die area. The free-space wireless measurement of the TX over a 10-cm link range vields 15 Gb/s data rate at an error vector magnitude (EVM) of -14.8 dB. The TX achieves an EIRP of 4 dBm while consuming 560-mW power.

Index Terms—8PSK, CMOS, mixer, mm-wave, neutralization, on-chip antenna, phase modulation, power amplifier, switchable phase shifter (SPS), transmitter (TX).

communication links for data rates in excess of more than 10 Gb/s [2], [3].

Advanced compound III–V technologies with f_{max} exceeding 1 THz may naturally be positioned to be the candidate of choice for ultra-high data rates at very high carrier frequencies [4]–[13]. Nevertheless, future high data-rate mmwave wireless applications mandating the massive amount of performance improving digitally assisted analog/RF signal processing, silicon platforms (e.g., CMOS or SiGe BiCMOS) with a high level of integration would be of high interest. Recently, silicon-based TRX front ends operating in the high mm-wave and sub-THZ frequency bands have been reported [5]–[13], [15]–[22].

The availability of wide BW within the high-mmWave frequency range seems to partially address a challenging requirement associated with "conventional" wireless links, that is, the need for very complex modulation schemes (e.g., 1024QAM [23], [24]) at lower RF frequencies (i.e., \leq 10 GHz)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 9, SEPTEMBER 2019

3161

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 54, NO. 11, NOVEMBER 2019

Analysis and Design of High-Order QAM Direct-Modulation Transmitter for High-Speed Point-to-Point mm-Wave Wireless Links

Huan Wang^o, Student Member, IEEE, Hossein Mohammadnezhad^o, Student Member, IEEE, and Payam Heydari^o, Fellow, IEEE

Abstract-A novel high-speed wireless transmitter (TX) architecture is presented that directly transforms incoming data bits into high-order 4^M-quadrature amplitude modulation (OAM) constellation by adding multiple quadrature phase shift keying (QPSK) signals with appropriate amplitude ratios. The costly high-speed digital-to-analog converters (DACs) in conventional TXs are thus completely avoided, resulting in a highly integrated solution amenable to ultra-high speeds and operating frequencies. Design tradeoffs are analyzed in detail. Based on this article, a TX prototype at 115-GHz carrier frequency implementing the 16OAM direct-modulation scheme is fabricated in a 180-nm SiGe BiCMOS process ($f_{MAX} = 270$ GHz). Wireless testing at a 20-cm distance with 25-dBi horn antennas on both transmitting and receiving side measures 20-Gb/s data rate with an error vector magnitude (EVM) of -15.8 dB and modulated output power of +1 dBm. The TX consumes 520 mW of power and occupies 3.17 mm² of active area.

with wide available BWs. Transceivers (TRXs) based on III–V technologies (with $f_{MAX} > 1$ THz) have reported impressive data rates at very high carrier frequencies [4]–[12]. These technologies, however, are not suitable for highly complex and massively integrated systems due to low level of integration and high manufacturing cost. Silicon-based technologies offer much higher level of integration and can pave the way for large-scale commercialization of ultra-high-speed point to-point wireless links. Recently, silicon-based TRXs operating in the high mm-wave and sub-THz bands have been reported [13]–[31]. While it is tempting to go to very high frequencies for more BW, transistor f_{MAX} poses a fundamental limit. Operating around f_{MAX} leads to poor efficiency and link budget [17], [18], [31]. This compels any practical system to

2435

A 115–135-GHz 8PSK Receiver Using Multi-Phase RF-Correlation-Based Direct-Demodulation Method

Hossein Mohammadnezhad[®], Student Member, IEEE, Huan Wang[®], Student Member, IEEE, Andreia Cathelin[®], Senior Member, IEEE, and Payam Heydari[®], Fellow, IEEE

Abstract—This paper presents the theory, design, and implementation of an 8PSK direct-demodulation receiver based on a novel multi-phase RF-correlation concept. The output of this RF-to-bits receiver architecture is demodulated bits, obviating the need for power-hungry high-speed-resolution data converters. A single-channel 115–135-GHz receiver prototype was fabricated in a 55-nm SiGe BiCMOS process. A max conversion gain of 32 dB and a min noise figure (NF) of 10.3 dB were measured. A data rate of 36 Gb/s was wirelessly measured at 30-cm distance with the received 8PSK signal being directly demodulated onchip at a bit-error rate (BER) of 1e-6. The measured receiver sensitivity at this BER is -41.28 dBm. The prototype occupies 2.5×3.5 mm² of diu area, including PADs and test circuits (2.5-mm² active area), and consumes a total dc power of 200 25 mW

Index Terms-8PSK modulation, above 100 GHz, direct demodulation, high-order modulation, high speed, RF correlation, RF-to-bits.

wide bandwidth provide a more practical pathway toward tensof-gigabits per second wireless transceivers.

Most importantly, although very high-speed wireless transceiver front ends based on conventional direct-conversion [7]–[9] or IF-conversion [10]–[12] architectures have been reported recently, their inputs/outputs are still modulated baseband or IF signals. Ultra-high-speed and high-resolution data converters are thus required to (de-)modulate raw bits' information. Based on the Nyquist criteria, the sampling rates of these data converters need to be at least 2 and 4 times the baud rate of the modulated baseband and IF signals, respectively, to avoid aliasing [13]. However, signal-to-noise-distortionratio (SNDR) and spurious-free-dynamic-range (SFDR) both quickly degrade with speed, leading to increasingly poor resolution. Accordingly, ultra-high-speed transceivers in the prior art utilize expensive and bulky high-speed real-time

PRBS

Conventional Direct Modulation 5Gbps B0

L.4mm

LNA

Det

0.8mm

[Wang - ISSCC 2013] and [Wang - JSSC2014]

	[1]	[2]	[3]	[4]	This work
Proc.	32nm SOI CMOS	45nm SOI CMOS	0.13μm BiCMOS	65nm CMOS	32nm SOI CMOS
Freq.	291GHz	280GHz	380GHz	260GHz	210GHz
Topology	2×2 DAR	4×4 DAR	Quadruple r-based TRX	2×2 Quadruple r-based TRX	2×2 Fundamental TRX
Mod.	None	None	FMCW	ООК	ООК
EIRP [dBm]	-1	9	-13	5	5.13 (15.2 @ P _{sat})
P _{DCTX} [mW]	74.8	817	182	688	240
EIRP/P _{DCTX}	1.1%	1%	0.028%	0.46%	1.4% (>6.9%@P _{sal})
Area [mm ²]	0.64	7.29	4.18	6	3.5 (TX) + 1.12 (RX)

Z. Wang *et al.*, "A CMOS 210GHz fundamental transceiver with OOK modulation," IEEE J. Solid-*State Circuits*, vol. 49, no. 3, pp. 564-580, March 2014.

PA ____

VCO

Driver

2.5mm

1.4mm

- Using quadrature down- and up-conversion to perform QPSK (de-)modulation
 - Inject BB PRBS data streams to an I/Q mixer with quadrature LO

Conclusion

- Current ADC-less receivers
 - ♂ Only limited to basic modulations (OOK, QPSK)
 - For ultra-high-speed require very high center frequency and BW

Examples of Higher-Order Direct (De-)Modulation in RF/Analog Domain

Case Study 1 mm-Wave Bits-to-RF RF-8PSK Transmitter in CMOS

 Peyman Nazari, Saman Jafarlou, and Payam Heydari, "A CMOS Two-Element 170-GHz Fundamental-Frequency Transmitter with Direct RF-8PSK Modulation," to appear in *IEEE Journal of Solid-State Circuits*, vol. 55, 2020

Proposed RF-8PSK Modulation

- Starting with RF-QPSK TX architecture [Prior Work]
 - Inject BB PRBS data streams to an I/Q mixer with quadrature LO

- Add another level of modulation in the phase-domain to QPSK modulator's output
- Create two versions of QPSK constellation, itself and its 45° phaserotated version, depending on the status of a 3rd input bit

- To avoid the use of wide-band RF phase-shifters at 170 GHz, this additional phase-modulation can be moved to the LO path (before I/Q mixers)
- The phase of both I and Q signals are altered using two switchable phaseshifters (SPSs)

RF-8PSK TX in CMOS

Measurement Results

Spectrum measurement of TX output signal at 3GSymbol/s

Measured constellations for (a) BPSK (5Gbps), (b) QPSK (10Gbps), (c) 8PSK (15Gbps). (d) Measured bit-error-rate vs. bit-rate for BPSK, QPSK, 8PSK constellations

Examples of Higher-Order Direct (De-)Modulation in RF/Analog Domain

<u>Case Study 2</u> mm-Wave Bits-to-RF High-Order QAM Transmitters Using 1-bit Digital-to-Analog Interface Enabling 20+ Gbps Data Rate

- H. Wang, H. Mohammadnezhad, and P. Heydari, "Analysis and Design of High-Order QAM Direct-Modulation Transmitter for High-Speed Point-to-Point mm-Wave Wireless Links," *IEEE Journal of Solid-State Circuits*, vol. 54, Nov. 2019
- H. Wang, H. Mohammadnezhad, D. Dimlioglu and P. Heydari, "A 100-120GHz 20Gbps Bits-to-RF 16QAM Transmitter Using 1-bit Digital-to-Analog Interface," *IEEE Custom Integrated Circuits Conference (CICC)*, Austin, TX, 2019.

Direct Modulation with 1-bit Interface

- I-bit data stream interface, no high-speed DACs
- Increase modulation order beyond OOK, QPSK, etc

From QPSK to 16QAM Combining QPSK to Form 16QAM

QPSK2 defines center in each quadrant of 16QAM

Core Idea

- QPSK1 adds on top to form 16QAM symbols
- Only constant envelope signals + linear combiner

Core Idea From QPSK to 16QAM (cont'd)

Combining QPSK to Form 16QAM

- Error vectors in QPSK1 and QPSK2 random, independent
- 16QAM EVM ≈ QPSK EVM
- Low EVM QPSK much easier

Extension of Core Idea From QPSK to 4^N-QAM

• Extend to Higher Order Modulation Easily

- 3 or 4 QPSK combining leads to 64QAM or 256QAM
- LO I/Q mismatch and phase noise become bottleneck
- Burden on D/A interface greatly relaxed

Generation of high-order QAM modulations

- ℬ High-speed well-matched switches (THD degrades with parasitics)
- ℬ High-speed precise timing control
- © DC bias tuning instead of high-speed RF switching

- LO multiplier chain + I/Q Generation
- QPSK modulator with tunable amplitude
- Linear combiner

Chip Micrograph

- 180nm SiGe BiCMOS f_{MAX} ~ 270GHz; 3.17mm² active area- On-chip PRBS
- Wafer probe mm-Wave I/O

Nanoscale Communication IC LAB

Wireless Measurement Setup

Modulation Measurements

- Wireless measurement of 16QAM direct-modulated signal at 20cm distance
- Less than 1.5 dB degradation in 16QAM EVM from sum of QPSKs

- Better gain and phase matching at lower data rates
- Lower EVM degradation from QPSK to 16QAM

Performance Comparison

Reference	[1]	[2]	[3]	[4]	This Work
D/A Interface	External AWG	External AWG	External AWG	Integrated / Multi-bit digital in	Integrated / Raw bits in
Level of Integration	Mixer/ LO Chain	IQ IF/Mixer/PA/ LO Chain	IF/Mixer/PA/ LO Chain	RF-DAC/Antenna	LO Chain/Modulator/PA
Freq (GHz)	289-311	57-66	70-105	130-142	100-120
Modulation	32QAM	64QAM	16QAM	16QAM	16QAM
Single Channel Data Rate	105 Gb/s	21.12Gb/s	60 Gb/s	7 Gb/s	20 Gb/s
EVM _{rms,avg} (dB)	-21	-24.1	-16.9	-13.8	-15.8
Estimated BER	10 ⁻³	10 ⁻³	10 ⁻³	10 ⁻²	10 ⁻³
Peak Pout (dBm)	-5.5	10.4	-1.9	13.2 (EIRP)	3
Power (mW)	1400	544	120	1255	520
Tech	40nm CMOS	65nm CMOS	65nm CMOS	45nm CMOS SOI	180nm SiGe BiCMOS

- NCIC Labs Ph.D. students especially Hossein Mohammadnezhad and Huan Wang
- National Science Foundation
- Samsung Advanced Institute of Technology
- Keysight Technologies, especially, Dave Hu and Neema Shafigh
- STMicroelectronics and TowerJazz Semiconductors for Chip Fabrications

Backup Slides

NANOSCALE COMMUNICATION IC LAB

University of California, Irvine

Justification for Silicon Implementation

Bandwidth – Active Device Technologies

- Si-based technologies offer high level system integration with low cost
- Device speed sufficient for operation in 100-200GHz band
- Best Commercially available SiGe processes:
 - STMicroelectronics 55nm SiGe BiCMOS^[24]: 320/370GHz f_T/f_{max}
 - GlobalFoundries 90nm SiGe BiCMOS^[23]: 310/370GHz f_T/f_{max}
- Best Commercially available CMOS processes:
 - STMicroelectronics 28nm FDSOI^[28]: 275/250GHz f_T/f_{max}
 - GlobalFoundries 45nm RFSOI^[29]: 305/355GHz f_T/f_{max}

Examples of Higher-Order Direct (De-)Modulation in RF/Analog Domain

Example 2 mm-Wave RF-to-Bits Multi-Phase RF-Correlation-Based Direct-Demodulation 8PSK Receiver

Ph.D. Researchers: Hossein Mohammadnezhad, Huan Wang

 H. Mohammadnezhad, H. Wang, A. Cathelin and P. Heydari, "A Single-Channel RF-to-Bits 36Gbps 8PSK RX with Direct Demodulation in RF Domain," *IEEE Custom Integrated Circuits Conference (CICC)*, Austin, TX, 2019

NANOSCALE COMMUNICATION IC LAB

University of California, Irvine

Proposed Direct Demodulation 8PSK Technique

© 8PSK modulation, high spectral-efficiency

Output: ADC-less multi-phase RF-correlation demodulation technique

- 22.5° phase offset: between LO and RF
- 4 differential LO phases: partition IQ signal space to 8 subsections
- Simple sign-check comparators: extract three demodulated bits

Multi-Phase RF-Correlation Demodulation

Multi-Phase RF-Correlation Demodulation

Multi-Phase RF-Correlation Demodulation

RF-Correlation Direct Demodulation: Flow-Chart

Proposed Direct Demodulation 8PSK RX

Die Micrograph

○ 55nm SiGe BiCMOS process (occupies 2.5mm² active area)

Nanoscale Communication IC LAB

Wireless Measurement: 8PSK Constellations

- **o** 8PSK constellations reconstructed from two IQ branches
- 30/36Gbps 8PSK constellations at 30cm wireless distance

Wireless Measurement: Demodulation

- Wireless measurement of 8PSK direct-demodulated bits at 30cm distance
- BER of 1e-6 for PRBS-7 sequence; -41.28dBm sensitivity

Nanoscale Communication IC LAB

Comparison Table & Conclusion

	This Work	ISSCC 2014 Okada	JSSC 2015 Thyagarajan	JSSC 2015 Thyagarajan	ISSCC 2017 Dolatsha
Modulation	8PSK	QPSK	QPSK	BPSK	OOK
Demodulator	Multi-Phase RF- Correlator	Quadrature Zero-IF	Quadrature Zero-IF	Quadrature Zero-IF	Envelope Detector
Frequency (GHz)	125	60	240	240	130
Data-Rate (Gbps)	36	14.08	16	9	11.5
BER	1e-06	1e-03	1e-04	1e-05	1e-06
Gain (dB)	32	30	25	25	NA
Wireless Distance (cm)	30*	90	2	2	50
Power Dissipation (mW)	200.25	220	260	260	24**
Energy Efficiency (pJ/bit)	5.56	15.63	16.25	28.9	2.08**
Technology	55nm SiGe BiCMOS	65nm CMOS	65nm CMOS	65nm CMOS	55nm SiGe BiCMOS

* Limited by measurement setup

** Non-coherent reception: excluding power-hungry blocks (synthesizer, LO, quadrature mixer)

Highest speed, modulation-order, lowest BER and excellent energy efficiency

- The current TRX architectures are fundamentally incapable of addressing unresolved challenges to achieve 20+ Gbps data rates
 - Leaving (de-)modulation to the digital back-end, among other tasks, requires high-resolution/high-speed data converters that are impossible to realize in silicon
 - Channel bonding will lead to unacceptable amount of power dissipation
- This talk makes a strong argument in favor of novel TRX architectures incorporating direct-modulation and direct demodulation in RF/analog domain
- Two Examples were presented
 - A new method for ultrahigh-speed direct-modulation 16QAM signal
 - A multi-phase RF-correlation-based direct-demodulation 8PSK RX

- Cut-off frequency scales up with device scaling
- Use of sophisticated signal processing on a single chip
 - Dense multiple antenna systems in the form of MIMO or phasedarray with many antenna elements
 - Increasing frequency reuse through the creation of smaller cells, referred to as femto-cells, with ranges on the order of 10–200 m

