

#### SMART BEAMING OF RFID READER FOR DATA AND POWER TRANSFER



IEEE Microwave Theory and Techniques Society Washington DC NoVA Chapter, Old Town Alexandria May 4th, 2016

#### ALESSANDRA COSTANZO



DEPARTMENT OF ELECTRICAL, ELECTRONIC, AND INFORMATION ENGINEERING, G. MARCONI" (DEI)



UNIVERSITY OF BOLOGNA

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA



## UNIVERSITY OF BOLOGNA: THE CAMPUSES



Campuses



BOLOGNA

CESENA

FORLÌ

RAVENNA

RIMINI

#### **BUENOS AIRES**



#### UNIVERSITY OF BOLOGNA: THE STUDIUM FROM OVER 900 YEARS

| 1088 |  |
|------|--|
|      |  |

STUDIUM IN BOLOGNA 1988

MAGNA CHARTA UNIVERSITATUM

IT IS THE OLDEST UNIVERSITY IN THE WESTERN WORLD

CONFIRMS THE ESSENTIAL ROLE OF THE UNIVERSITY IN CONTEMPORARY SOCIETY



ARCHIGINNASIO



**ANATOMICAL THEATRE 1653** 

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA



#### **BOLOGNA AND GUGLIELMO** MARCONI





#### VILLA GRIFFONE



#### SUMMARY

- Introduction & background of the IoT paradigm
- The need: zero-power localization, identification, sensing
- RX side: sensor nodes need for energy collection from environmental and/or intentional RF sources: RECTifyng antENNAs (RECTENNAs)
- TX side/RFID reader: need for agile radiating systems
  - *Readers* augmented with *localization* and *selection capabilities*
  - Reader with monopulse RADAR capabilities
  - Time-modulated arrays (TMAs): a highly reconfigurable family of radiating systems. Design by nonlinear CAD and EM simulation
  - Real-time exploitation of TMA for multi-frequency beam-forming for *Smart Wireless Power Transmission*
- Conclusions



#### THE VISION: "INTERNET OF THINGS"

 "Map" the physical world into the internet space Physical World Web



Expected >50 billion devices!

Ambient intelligence: almost unlimited applications



#### **INTERNET OF THINGS APPLICATIONS**

indoor and outdoor crowded areas with movable sensor-less and sensor-enabled objects.

#### *mobile and fixed wireless nodes* are

spread out through the scenario to provide energy for multi-parameter monitoring





#### INTERNET OF THINGS: TECHNOLOGY REQUIREMENTS

- Devices embedded inside objects
  - Extremely *low cost*
  - Energy autonomous (*energy harvesting, low consumption*)
  - Eco-compatible (disposable)
  - Sub-meter *localizable* sensing capability

#### Convergence of Radio Frequency IDentification (RFID) and Real-time Locating Systems (RTLS)

(>6 billions new market opportunities in 2022\*)

• Zero-power communication and localization

(\*) IDTechEx "Real Time Locating Systems 2012-2022" www.IDTechEx.com/RTLS

P. Harrop and R. Das, "Wireless Sensor Networks 2011-2021: The new market for Ubiquitous Sensor Networks (USN)", www.IDTechEx.com

P. Harrop and R. Das, "Energy Harvesting and Storage for Electronic Devices 2011-2021", www.IDTechEx.com



## **RF ENERGY HARVESTING**

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA



#### **NEED FOR LOW ENERGY**

 Many applications can be supported by small amounts of power (*from a few μW to a few hundreds of μW*),



*ultra-low power* microcontrollers and sensors requiring power consumption few times per day



#### RECTENNA

 RECtifying anTENNA (RECTENNA) is the subsystem devoted to receive the RF power and rectify it to DC





#### **RECTENNA FOR ENERGY HARVESTING**

 RECTENNA for Energy Harvesting: exploits *environmental* RF sources



# collected power in the low $\mu$ W range

not deterministically predictable, considering:

- i. Channel fadingii. antennas misalignmentsiii. Antenna mispolarizazion
- These systems could be more suitable for "RF upon request" applications

A. Costanzo, M. Dionigi, D. Masotti, M Mongiardo, G. Monti, L. Tarricone, R. Sorrentino, "Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach," Proceedings of the IEEE, vol.102, no.11, pp.1692,1711, Nov. 2014



#### **RECTENNA FOR WPT**

 RECTENNA for Wireless Power Transfer: exploits *intentional* and dedicated RF sources ("Energy showers")



N. Decarli, et al., "The GRETA architecture for energy efficient radio identification and localization," 2015 International EURASIP Workshop on RFID Technology (EURFID), pp.1-8, 22-23 Oct. 2015



## **GRETA OBJECTIVES**

Integration of the concepts of

- Radiofrequency identification (RFID)
- Wireless sensor networks (WSN)
- Real time locating systems (RTLS)



GREen TAgs and sensors with ultra-wide-band Identification and localization capabilities

GRETA



The GRETA tag exploits the UWB backscattering mechanism



• The poor link budget

Due to the two-hop communication scheme and the standard carrier frequency, the received signal backscattered by the tag is very weak.

#### • The multi-tag management

When adopting UWB backscatter communication, no anti-collision protocol can be implemented due to the extremely simple tag front-end and the absence of any receiver and processing unit at tag side.

#### • The energy-related aspects

The circuitry at tag side (UWB switch, control logic and sensors) must be properly powered so energy-harvesting techniques have to be considered.



Joint adoption of UWB and UHF signaling



## UWB/UHF STAND-ALONE TAG

UWB (3.1÷5.6 GHZ) for communication (Tag ID, sensor data) and localization

Energy-harvesting and synchronization through the UHF (868 MHZ) link





### UWB STAND-ALONE TAG







M. Fantuzzi, D. Masotti and A. Costanzo, "A Novel Integrated UWB– UHF One-Port Antenna for Localization and Energy Harvesting," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 9, pp. 3839-3848, Sept. 2015.



### **RECTENNA FOR EH**

• Rectenna for EH requirements:

#### **RF EH UNKNOWN info:**

- Frequency source
- Source Intensity
- Polarization
- Direction of arrival
- •Antennas requirements:
  - Wideband/multiband
  - Low directivity
- Circularly polarized Task level: *demanding*





### **RECTENNA FOR WPT**

#### • Rectenna for WPT requirements:

#### **RF WPT** KNOWN info:

- Frequency source
- Source Intensity
- Polarization
- Direction of arrival

#### Antennas requirements:

- Single frequency
- High directivity
- Linearly polarized
- Task level: medium difficulty





## RF ENERGY TRANSMISSION

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA



## HOW TO SEND POWER?

• What about the requirements of the **RF SHOWERS**?



#### SOLUTIONS:

- ♦ Energy-unaware
- almost omnidirectional behavior (highly crowded-tag scenario)
- a lot of energy is waisted

#### © Energy-aware

 precise and selective powering (multi-tag scenario)



## AGILE POWER TRANSMITTERS

- REQUREMENTS:
  - Able to point in selected directions
  - Real-time Highly reconfigurable
  - Easy to be designed
- complex structures
  - PHASED ARRAYS
  - SERIES-FED/ FREQUENCY SCANNING
- simpler solutions for IoT
  - MONOPULSE RADAR
  - TIME-MODULATED ARRAYS



## PHASED ARRAYS

• PHASED ARRAY

- D: n-way symmetric power divider
- Φ<sub>i</sub>: i-th phase shifter, electronically controlled by a voltage signal (Vi)

$$\Phi_{i+1}(V_{i+1}) - \Phi_i(V_i) = \delta$$
$$(2 \le m \le n)$$

 A<sub>i</sub>: i-th power amplifier, to guarantee the desired powe level (or to have non-uniform arrays)





### 5.8 GHz LARGE PHASED ARRAY FOR MPT



N. Shinohara, "Beam Control Technologies With a High-Efficiency Phased Array for Microwave Power Transmission in Japan," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1448-1463, June 2013.

5.8 GHz phased array for MPT with GaN FET and class-F amplifier, total power >1,9kW.







## **RETRODIRECTIVE ARRAY**

 RETRODIRECTIVE ARRAY: reflects an incident RF signal back in the direction of arrival. For applications with <u>relaxed</u> pointing accuracy and automatic beam forming







- Proper lines length provides proper phase condition
- Complex architecture (for phase-conjugation condition)



## **REFLECTARRAY WITH FOCAL POINTS**



$$\varphi_n = 2\pi / \lambda \left[ \left( r_{nS} + r_{nF} \right) - \left( r_S + r_F \right) \right]$$

#### f=2.4GHz Focal width W=7.8cm at a plane at 90cm from the reflectarray center

H.-T. Chou, T.-M. Hung, N.-N. Wang, H.-H. Chou, C. Tung, and P. Nepa, "Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications", *IEEE Transactions on Antennas and Propagation*, 2011

feed

80cm



### MECHANICAL TUNING OF THE FOCAL POINT



S. Karimkashi and A. A. Kishk, "Focusing Properties of Fresnel Zone Plate Lens Antennas in the Near-Field Region,"



## SERIES-FED ARRAY FOR FREQUENCY SCANNING

- Resonant periodic strips / slots fed by a travelling wave instead rad of a discrete distributed IN network:
  - Fixed beam for a fixed frequency
  - (Limited) steering capability in a frequency band







ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA



#### READER ANTENNA SYSTEM: MONOPULSE RADAR



two-element array: *monopole antenna* (almost omnidirectional)

- $\Rightarrow$  the array radiation pattern is shaped by in-phase ( $\Sigma$ ) and out-of-phase ( $\Delta$ ) array factors only:
- $\Rightarrow$  same shape in any pointing direction

 $\Sigma$  and  $\Delta$  directions are varied by simultaneously controlling two phase-shifters



### READER WITH DETECT AND SELECT CAPABILITIES



- Challanges:
  - Layout-wise design of phase-shifters

M. Del Prete, D. Masotti, N. Arbizzani, and A. Costanzo, "Remotely Identify and Detect by a Compact Reader With Mono-Pulse Scanning Capabilities", *IEEE Transactions on Microwave Theory and Techniques*, Vol. 61, No. 1, Part II, Jan. 2013, pp. 641-650

• Nonlinear relationship between varactors bias and phase-shift

## **OBJECTS DETECTION**

RID

starts searching for the object with the ID acquired during "selection

COARSE POSITIONING activate closely-spaced Tags measure of RSSI at the  $\Sigma$  RID ports

#### FINE POSITIONING monopulse RADAR measure of RSSI at the $\Sigma$ and $\Delta$ READER ports of tags placed around pointed position (same as in selection mode)





Smart

Space



# $\begin{array}{c} \text{COMPUTED AND MEASURED} \\ \Sigma \text{ AND } \Delta \text{ PERFORMANCE} \end{array}$





## **OBJECT SELECTION IN 2 STEPS**



#### **IDs ACQUISITION**

(only the  $\Sigma$  radio is involved):

- RID points to the desired object
- Inquire for IDs

#### SCANNING OPERATION

 $\Sigma$  and  $\Delta$  radios **cooperate** exploiting the scanning capabilities of the RID

RID stores a list with IDs with the highest figure of merit:

 $\mathsf{MPR} = \Sigma_{\mathsf{RSSI}}[\mathsf{dB}] \text{-} \Delta_{\mathsf{RSSI}}[\mathsf{dB}]$ 

The BEST CENTERED MPR is the POINTED OBJECT (scanning zone (θ= ±45°) swept in 40 steps, 1.5 ms each)



Alessandra Costanzo

### **ACTIVITY DIAGRAM**



34



#### OBJECT SELECTION IN HARSH EM ENVIRONMENTS



#### GOAL

select Tag-01, Tag-03 **READING zone** 

beam steering:±45 ⇒±180°phase-shifts outputs



tag-01 shows the best mpr at a 0rotation angle



PREDICTED AND MEASURED MPR: RID POINTING TO CENTRAL TAG excellent agreement with prediction (*carried out in free-space conditions*) NOTE: environment under test with severe multipath scenario

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA



### MEASURED PERFORMANCE OF RID FOR SELECTION OF TAG-03



#### RID POINTS TO TAG-03:

 the S and D radiation patterns rotate symmetrically around the RID pointing position.

#### SELECTION SUCCEDED! the best

centered absolute maximum of MPR, corresponds to Tag-03.

### Tag-03 SHOWS THE BEST MPR AT A 0°ROTATION ANGLE

#### **OBJECTS LOCALIZATION**

By *beam steering* RID also acquires others tags relative locations

*INFACT* allowed rotation angles are well within the allowed performance of the phase shifter outputs.



#### SET UP TO RECORDING THE SEQUENCE OF MOVING OBJECTS

RID is positioned perpendicular to the objects plane Recognizes the sequence correctly. This operation requires less than 500 ms





## Time-modulated arrays (TMAs)



### TIME MODULATED ARRAY ARCHITECTURE





#### TIME MODULATED ARRAY EXCITATION SPECTRA





Alessandra Costanzo

#### **TIME-DEPENDENT ARRAY FACTOR**



- at the *fundamental carrier (h=0)*
- at the sideband harmonics (h≠0)



#### TMA RADIATION @ FUNDAMENTAL AND SIDE BANDS





## TMA POTENTIALS

- *Time* as an array further design parameter:
- almost unlimited control sequence combinations in TMAs
- ease implementation fast switching control

#### ANTENNA RECONFIGURATION IN REAL TIME! NO NEED FOR:

- 1 phase shifters and complex feeding networks (*as phased arrays*)
- 2 Large array structure (*as leaky wave antennas*)
- 3 Large array structure with broadband matching constraints (*as frequency scanning antenna*)
- 4 Mechanical tuning of the focal point
- Make TMA a versatile and adequate radiation system for modern wireless applications (e.g. SDR)

## *TMAs* CONTROL SEQUENCE EXAMPLES: 1- SIDE LOBES REDUCTION



L. Poli, P. Rocca, L. Manica, A. Massa, "Pattern synthesis in time-modulated linear arrays through pulse shifting," *IET Microwaves, Ant. & Prop.*, vol. 4, no. 9, pp. 1157-1164, Sept. 2010



#### *TMAs* CONTROL SEQUENCE EXAMPLES: 2- HARMONIC NULLING



L. Poli, P. Rocca, G. Oliveri, and A. Massa, "Adaptive nulling in time-modulated linear arrays with minimum power losses," *IET Microwaves, Antennas & Propagation*, vol. 5, no. 2, pp. 157-166, 2011



# *TMAs* CONTROL SEQUENCE EXAMPLES: 2- HARMONIC BEAMFORMING

 Exploitation of multi-channel features harmonic beamforming.

#### predicted radiation pattern



L. Poli, P. Rocca, G. Oliveri, A. Massa, "Harmonic beamforming in time-modulated linear arrays through particle swarm optimization", *IEEE Trans. Ant. & Prop.*, vol. 59, no. 7, pp. 2538-2545, July 2011



## TMA analysis/design



### TMAS SEQUENCE OPTIMIZATION

Available TMA design methods focus on control sequence optimization, but rely on *ideal* radiating elements and *ideal control switches* 



VARIABLE APERTURE SIZE:

design parameter: pulse length



BINARY OPTIMIZED TIME SEQUENCE design parameter: pulse sub-intervals



*PULSE SHIFTING design parameter: pulse switch on time interval* 

W. H. Kummer, A. T. Villeneuve, T. S. Fong, and F. G. Terrio, "Ultra-low sidelobes from time-modulated arrays," IEEE Trans. on Ant. and Prop., vol. AP-11, no. 6, pp. 633-639, Nov. 1963



## NL/EM TMAS CO-SIMULATION

#### Piecewise Harmonic-Balance method



Rizzoli, D. Masotti, F. Mastri, E. Montanari, "System-Oriented Harmonic-Balance Algorithms for Circuit-Level Simulation", *IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems*, Feb. 2011, vol. 30, no. 2, pp. 256 – 269



#### NL/EM TMAS CO-SIMULATION EVALUATION OF THE TMA RADIATION PERFORMANCE

#### Under sinusoidal regime

spectrum harmonics



V. Rizzoli, A. Costanzo, and D. Masotti, "Coupled nonlinear/electromagnetic CAD of injection-locked self-oscillating microstrip antennas", *Int. Journal RF and Microwave Computer-Aided Eng.*, vol. 13, Sept. 2003, pp. 398-414



## Field evaluation





#### NL/EM TMAS CO-SIMULATION Under modultaed regime ON/OFF switching





#### NL/EM TMAS FAR-FIELD PREDICTION Under modulated regime ON/OFF switching

$$\begin{aligned} \mathbf{E}_{1}(r,\theta,\phi;t_{M}) &= \frac{\exp(-j\beta r)}{r} \bullet \\ &\bullet \sum_{i=1}^{n_{A}} \left[ \hat{\theta} A_{\theta}^{(i)}(\theta,\phi;\omega_{0}) + \hat{\phi} A_{\phi}^{(i)}(\theta,\phi;\omega_{0}) \right] I_{A,1}^{(i)}(t_{M}) - \\ &- j \frac{1}{r} \left[ \sum_{i=1}^{n_{A}} \frac{\partial \left\{ \exp(-j\beta r) \left[ \hat{\theta} A_{\theta}^{(i)}(\theta,\phi;\omega) + \hat{\phi} A_{\phi}^{(i)}(\theta,\phi;\omega) \right] \right\} \right|_{\omega=\omega_{0}} \bullet \frac{dI_{A,1}^{(i)}(t_{M})}{dt_{M}} \right] \end{aligned}$$

•  $A_{\theta}^{(i)}, A_{\phi}^{(i)} \longrightarrow EM$  data-base

- are the scalar components of the normalized field
- easily evaluated by EM simulation
- For a given array: EM analyses are carried out once for all

D. Masotti, P. Francia, A. Costanzo, V. Rizzoli, "Rigorous Electromagnetic/Circuit-Level Analysis of Time-Modulated Linear Arrays," *IEEE Trans. Ant. & Prop.*, vol.61, no.11, pp. 5465-5474, Nov. 2013.



### 16-MONOPOLE ARRAY DRIVEN BY MODULATED DIODES

- 16-monopole planar linear array operating at f<sub>0</sub>=2.45 GHz
- The substrate is a 0.635 mm-thick Taconic RF60A (e<sub>r</sub> = 6.15, tand=0.0028 @ 10GHz)





## Smart WPT BY TMA



- The versatility of TMAs allows a *smart transfer of power* by means of a <u>two-step procedure</u>
- Scenario: room with randomly placed tagged objects





- The RFID reader augmented by the *Monopulse-RADAR* capabilities:
- By adopting a 2-element arrays:  $\Sigma$  and  $\Delta$  radiation patterns are obtained from the *in-phase* ( $\Sigma$ ) and *out-of-phase* ( $\Delta$ ) antennas excitation



• Further feature *beam-steering*:



 by simultaneosly driving the proper phase shifts at the two antenna ports

M. Del Prete, D. Masotti, N. Arbizzani, and A. Costanzo, "Remotely Identify and Detect by a Compact Reader With Mono-Pulse Scanning Capabilities", *IEEE Transactions on Microwave Theory and Techniques,* Vol. 61, No. 1, Part II, Jan. 2013, pp. 641-650



### TAG LOCALIZATION BY MONOPULSE RADAR VIA TMA

- 1<sup>st</sup> step: Localization of tags with TMA
  - By properly driving a two-element array it is possible to have the sum (Σ) pattern @ f<sub>0</sub> and the difference (Δ) pattern @ f<sub>0</sub>±f<sub>M</sub>

A. Tennant, B. Chambers, "A Two-Element Time-Modulated Array With Direction-Finding Properties," *IEEE Antennas and Wireless Prop. Lett.*, vol. 6, pp. 64-65, 2007



Only the *two-inner-element sub-array* is operating (by keeping the remaining 14 switches open)

#### partial ground plane



#### nonlinear switches

D. Masotti, A. Costanzo, M. Del Prete, V. Rizzoli, "Time-Modulation of Linear Arrays for Real-Time Reconfigurable Wireless Power Transmission," IEEE Transactions on Microwave Theory and Techniques, vol.64, no.2, pp.331-342, Feb. 2016



### TAG LOCALIZATION: ANTENNA ELEMENT SPACING AND DIRECIVITY

Normalized directivity of an array of n *in-phase* (S) dipoles vs. element spacing L





#### TAG LOCALIZATION CAPABILITY

- Array of two *isotropic* antennas with  $\lambda/8$  spacing.
- TUNABLE SEQUENCES: <u>A pattern</u> is steared by varying d





## TAGS LOCALIZATION BY TMAs (array of dipole $\lambda/8$ spaced)

 Array of two *real*, *closer dipoles* with tunable sequences (for flat and low-directive Σ pattern);



 Good scanning performance in θ∈[-60°:60°], but with larger d variations with respect to the theoretical prediction



## TAGS LOCALIZATION BY TMAs (array of patch λ/3-spaced)

• Array of two *real patches* with tunable sequences:









## TAGS LOCALIZATION BY TMAs (array of dipole $\lambda/2$ spaced)

Array of two *isotropic* antennas with λ/2 spacing, driven by tunable sequences:





## TAGS LOCALIZATION BY TMAs (array of dipole $\lambda/2$ spaced)

Array of two *real dipoles* with λ/2 spacing with tunable seq.





## TAGS LOCALIZATION BY TMAs (array of patches $\lambda/2$ spaced)

• Array of two *real patches* with  $\lambda/2$  spacing with tunable seq.





## TAGS LOCALIZATION PROCEDURE

- The sharp nulls of the steered D patterns allow high resolution in the tags detection
- The backscattered Received Signal Strength Indicators (RSSI), due to the  $\Sigma$  and  $\Delta$  patterns, can be suitably combined to build the *Maximum Power Ratio (MPR)*





#### ARRAYS FOR LOCALIZATION: A COMPARISON



#### RFID READER WITH MONOPULSE RADAR CAPABILITIES

#### TMA-BASED IMPLEMENTATION OF THE RFID READER



- 2° step: Transfer of power to tags
  - The whole 16-element array is driven by proper preloaded control sequences involving all the switches
  - Possible decision rule:
    - split the scanning region

       (θ∈[-60°÷60°]) into sectors of
       amplitude equal to the half
       power beam width (HPBW)
    - for each  $\theta_{peak}$  falling in the sector centered around  $\theta_{HPBW}$ , the pre-loaded control sequence pointing the proper harmonic to the  $\theta_{HPBW}$ direction is used





#### SIMULTANEOUS POWERING OF THREE TAGS

## • In case of $\theta_{peak}$ falling into the sectors centered around $\theta_{HPBW} = -30^{\circ}, 0^{\circ}, 30^{\circ}$



#### **Simultaneous powering of 3 tags**







#### **PROTOTYPE AND SET-UP**





#### REAL WAVEFORM SEQUENCES FOR LOCALIZATION





Alessandra Costanzo

#### MEASURED RADIATION PATTERNS



- Slight asymmetry probably due to an asymmetry of the circuit
- Lower Δ patterns strength w.r.t. simulation



## Simulated radiation patterns



 Diode package parasitics responsible for an alternative path for RF signal to antenna ports ports not perfect control



#### Perspectives : GRETA

#### On paper UWB/UHF Antenna design and rectifiers

Loaded with the UWB and UHF backscatter modulator and the energy-harvesting block



#### The "GRETA" chip

Layout of the custom chip under test developed at Univ. Bologna containing:

- UWB backscatter modulator,
- energy harvesting unit at UHF,
- power management unit,
- control logic.



#### PERSPECTIVES



#### **RFID/RTLS** integration in smartphones:

- Millimeter wave massive antenna arrays
- Efficient energy transfer mechanisms to energize passive/active tags
- Single node localization

D. Dardari, et al. "The future of Ultra-Wideband localization in RFID," in 2016 IEEE International Conference on RFID, Orlando, USA, May 2016



- Need for solutions to integrate RFID, RTLS and energy harvesting capabilities for IoT applications.
- Simple, low-cost, light-weighted solutions for on-demand RF energy transfer
  - Reader augmented the a monopulse RADAR antenna enabling object detection and selection for efficient power "on demand" a
  - Time-modulated arrays demonstrate an unreachable, *almost realtime* reconfiguration.
- The ease of implementation of the TMAs (no phase shifters) makes them a potential candidate for *smart*, *pervasive WPT solutions*









#### Alessandra Costanzo University of Bologna alessandra.costanzo@unibo.it

http://www.dei.unibo.it/en/research/research-facilities/Labs/rfcal-rf-circuitand-antenna-design-lab