

$\textbf{Grid-eMotion}^{\text{TM}}$

Overview

Hitachi Energy

Advancing a sustainable energy future for all

Hitachi Energy

Advancing a sustainable Energy Future

Transport & Infrastructure

Industry

Utilities

Software & Automation

Systems

Products

Asia, Middle East & Africa

Americas

Europe

Hitachi Energy Our journey continues

Market and Positioning

Our Value Proposition

We accelerate the future of smart mobility with revolutionary EV charging solutions. By decarbonizing the transport sector we contribute to a cleaner, healthier and more affordable future for everyone

Our Core Customer

We provide grid-to-plug solutions for public transportation and commercial vehicles. Our customers are transport infrastructure companies, that provide clean and efficient electrified commuting services and OEMs that use our solutions to enhance their offering

Our Competences

We specialise in developing, delivering and servicing **core technology packages** for eMobility applications across all contients leveraging our expertise in power electronics products and system projects. We deliver added value through our digital platform and services

01

Sustainability

Increased awareness of climate change, CO₂ footprint reduction and its social impact driving a global net-zero society and the need for decarbonization

02

Policy & Regulation

Government commitments towards **electrical transportation** and **shift from fossil-based to renewable power** generation – acceleration packages post COVID-19

03

Economy

Conversion towards **electrification** to improve **energy efficiency and to reduce Total Cost of Ownership (TCO)** amid reducing **dependence on the oil market** and lowering exposure to oil price volatility

04

Operation

Innovative digital solutions and power electronics offer an opportunity to transform traditional operations into future-proven solutions

e-Mobility will need a lot of clean electricity ...

e-Mobility is about the leading the energy-mobility nexus

100 millions¹

EV (cars, buses, trucks, trains, etc.) in our roads and tracks by 2030

500 TWh1

Yearly electricity needs to power all EVs by 2030

e-Mobility will
scale-up with the
convergence of
mobility actors
and energy
systems experts

... and scales of projects is growing

Until today		Soing forward
Few	~ # cities with EV operating	Many
1-10	~ # EV per project	100-1'000
1-10	~ # EV chargers per project	100-1'000
0.1-10	~ MW power grid connection	10-100

Hitachi Energy – eMobility Offering Portfolio

Grid-eMotion™ Fleet

Large-scale EV charging

Grid integration projects at depots and terminals involving conventional or prefabricated substations including transformers, switchgear, rectifiers, chargers, pantographs, auxiliaries, smart digital or service solutions.

Grid-eMotion™ Flash

Flash-charging onroute

World's fastest flash-charging connection technology that lets cities reduce the environmental pollution of their transit systems without affecting passenger capacity or journey times.

Grid-eMotion™ Rail

Battery-powered trains

Charging stations <u>for battery-powered trains</u> in DC and AC. Our solutions are designed for urban, suburban, regional train and people mover segments.

Grid-eMotion[™] positioning

Small scale

<1MW charging ... <10 charging points

 Historically driven by home and work chargers, with power scale-up over time

22 kW

Medium scale

1-2 MW charging ... 10-20 charging points

Primarily driven by Commercial fleets & Transit with centralized charging system approach

Large scale

2+ MW charging ... >20 charging points

Move towards **comprehensive charging hubs** including integrated digital platform,
energy storage, local power production and
mega-watt charging (MCS)

3rd parties legacy standalone approaches

Most compact and configurable "grid-to-plug" and "data-to-analytics" charging system

| Fleet/Asset Management | Pleet/Asset Management | Remote monitoring and services | Smart charging and services | Smart charging infrastructure Might | Microgrid (Massht) | M

22 kW - AC and DC charging

Up to 350 kW – DC mainly DC Fast Charging (CCS)

Up to 4.5 MW – DC only/ Megawatt Charging (MCS)

2019 2021 2023 2025 2027

Large-scale charging solution

Hitachi Energy

Hitachi GSIB

Energy Management

and services

Smart charging

Grid Connection

Transformer

Rectifier

MV switchgear

Auxiliary System

Remote monitoring

Microgrid (eMeshTM)

Grid-eMotion™

Grid-eMotion™ Flash

Hitachi Energy – eMobility

Charging strategies for different e-bus fleet operations

Opportunity and Flash-charging Overnight 150kW-600kW (pantograph) 50kW-150kW (plug)

Overnight charging at depot

- Significant footprint required
- HV or MV substation needed
- Large batteries
- Long downtime to recharge
- Usually small e-buses
- Usually charging via plug
- Interoperable with all bus and truck OEMs
- Space needed at terminals
- Typically, 12m or 18m e-buses
- Available on PantoUp
- Available on PantoDown
- Interoperable with few bus OEMs

Opportunity charging at terminals

Flash-charging at some stops

- Light and spread infrastructure
- Light batteries
- No downtime to recharge
- High frequency/capacity lines
- Best suited to big e-buses and Bus Rapid Transit (BRT)

Grid-eMotionTM Flash

Why flash-charging?

Simpler interface Reduced time to charge

Reduced fleet downtime

Reduced chargers' occupancy at terminals/depot

Increased utilization of charging terminals

Higher charger power density

Easier integration of wayside energy storage

Best conditions for Flash charging

Grid-eMotion™ Plan

Web-based software tool for optimising the design of the e-bus system based on

- Energy consumption for both traction and auxiliary
- Battery life data
- Route data
- Traffic simulation

The tool provides an optimised system design

- Optimal battery dimensioning
- Optimal selection and placement of chargers
- Detailed information on energy consumption
- Speed and line profile, traction, auxiliary, charging power and energy profiles

Flash-charging using the drivetrain to charge the e-bus

What

- The flash-charging concept uses a stabilised voltage source to provide a simpler interface to the vehicle
- The drivetrain automatically switches from delivering power to the wheels (DC/AC) to charging the batteries (DC/DC).
- There is no need to wait while communication is established, the charging process starts right away.

The concept to reduce time to start charging down to 1s

Smart robotic pantograph

Safety by design

- 4 contacts (+, -, CP and PE)
- The system is still "floating" so even in the event of a single failure it poses no danger of electrical shock
- The overhead receptacle (or the socket) is only energised when the bus is connected
- The earth is the first to connect and the last to break
- The earth between the bus and the charger, the insulation between positive and earth as well as negative to earth are continuously monitored

Flash-charging stations in DC

Hitachi Energy offering

Charging solutions up to 1MW based on flashcharging technology developed for bus rapid transit (BRT) high capacity lines

- Full containerised
- Grid connection
- Network management, SCADA, EAM
- Earthing system
- Charging poles
- Grid compliance (harmonics, insulation coordination, RAMS, EMC)
- Installation and site commissioning
- End-user approval

Smart robotic pantograph

- Less than 1s to connect (suitable for charging at stops)
- 1000A permanently

Flash-charging stations

At bus terminal or stops with MV

- MV connection
- Converter stations up to 1MW
- Up to 1000VDC connection

Optional at bus stops with LV

- LV connection
- Wayside Energy Storage System

Flash-charging station with ESS

Light infrastructure at depot

Grid-eMotion[™] Fleet

From single to bulk AC/DC power conversion

Single AC/DC units

- Each charger has its own AC/DC
 power converter cabinet fed from LV
- For EV fleets requiring MV connection, voltage needs to step down in LV
- Large AC distribution board required
- Good approach for projects requiring few fast chargers (pilot project)

AC/DC bulk conversion

- DC/DC converters are withdrawable racks to ease maintenance & scaleup
- Direct connection to MV is up to 3 MW transformer blocks for better efficiency
- Only DC cabling to EV dispensers
- Future-proofed for large scale with reduced footprint & complexity

Modular solution – high reliability

Charging modules can easily be racked in and out

Fixed back panel with contacts

Main power unit of the rectifier is also rackable

Movable rig for easy replacement of diodes

Configurable indoor and outdoor delivery

Indoor

Configurable delivery of standalone core components

Outdoor

Configurable plug-and-play delivery of "Grid-to-Plug" charging box

- Remote condition monitoring features
- Predefined **smart charging** engines that comply to industry standard (OCPP, VDV, Modbus, OpenADR)
- Interoperable interfaces with EV fleet telematics, scheduling and asset management

.. Delivered with all-in-one digital platform

Grid-eMotion Fleet Indoor Product Line-up

Converter transformer

5 DC cabinets

Converter transformer

Туре	Dry Type
Application	12 pulses
Power	1.2 MVA to 3.3 MVA
Primary voltage	400V _{AC} to 42kV
Primary taps	+/-2 x 2.5%
Secondary voltage	2 x 530 V _{AC}
Frequency	50 +/-1% Hz
Number of phases	3
Vector group	Dy11d0
Cooling	AN
Duty cycle	100% continously
Ctandarda	IEC 60076-11
Standards	EN 50329

Rectifier

Туре	Diode/Thyristor
Configuration	12 pulse
Power	1 MW to 3 MW
Input	530 V _{AC}
Output	750 V _{DC}
Max Perm Voltage	900 V _{DC}
Insulation Voltage	2500 V _{DC}
Overvoltage Category	OV3
Ctondondo	IEC 60146
Standards	EN 50163

DC Cabinets

Rated Power	10 outputs of 100 kW
Nated Fower	5 outputs of 200 kW
Rated Input Voltage	750 V _{DC}
Input Voltage Range	600 ÷ 750 V _{DC}
Rated Output Voltage	650 V _{DC}
Output Voltage Range	150 ÷ 1000 V _{DC}
Cooling	AF
Overvoltage Category	OV3
Standarda	IEC 61851-23
Standards	IEC 61851-23-1

CCS2 wall boxes

Туре	CCS2
Plugs	Two
Rated Current	125 A, 250 A
Voltage Range	150 ÷ 1000 V _{DC}
Base dimensions	300x300 mm
Height	1620 mm
Standards	IEC 61851-23
	Status indicators
Accessories	Push buttons
	Hook for cable management
Optional	RFID for user authentication

Grid-eMotion™ Fleet

Outdoor solution (1MW box)

Outdoor solution (1MW box)

Outdoor configurations (LV grid-connection)

Up to 10 charging points

Up to 15 charging points

Grid voltage	LV_AC
Transformer	1600 kVA
Rectifier	1500 kW
DC Cabinets	3
DC-DC modules	15 x 100 kW
Dimensions	6.65 x 2.0 x 2.5 [m]

Up to 20 charging points

Grid voltage	LV _{AC}
Transformer	1600 kVA
Rectifier	1500 kW
DC Cabinets	4
DC-DC modules	20 x 100 kW (*)
Dimensions	7.5 x 2.0 x 2.5 [m]

(*) included smart charging to limit the peak demand

Outdoor configurations (MV grid-connection)

Rectifier transformer and MV switchgear in a separate e-house

Grid-eMotion™ Fleet

Charging Interfaces

Västerås, Sweden – Operational 5/2022

Design, engineering, fabrication and supply, installation and commissioning of charging infrastructure for a depot charging infrastructure, comprising:

- Fully enclosed building with following equipment
- 50 kVA transformer for auxiliary power
- 12kV rated, 1250 kVA rectifier transformer
- 1000 kW rectifier
- 4 x DC-DC charging cabinets with 18 modules of 75 kW
- 5 x Dual plug charging stations with parallel and sequential charging up to 150kW
- 3 CCS Wallbox charging plugs for 150kW charging

The contract included establishing interoperability for Volvo buses.

London, United Kingdom – Operational 11/2021

Design, engineering, fabrication and supply, installation supervision and commissioning of charging infrastructure for a depot charging infrastructure, comprising:

- 11 kV switchgear
- 50 kVA transformer for auxiliary power
- 2 MVA rectifier transformer Dd0y11
- 1750 kW rectifier
- 6 x DC-DC charging modules of 75 kW (racked power module)
- 11 x Dual plug charging stations with parallel and sequential charging

The contract included establishing interoperability for ADL/BYD Enviro400 buses.

In phase 1, 22 buses will be charged using the charging infrastructure at the depot. Also included is a two-year service contract for the charging infrastructure.

Phase 2, Will enable the remaining 8 modules of Phase 1 as well as add another 22 modules providing 18 additional charging points.

London, United Kingdom

Berlin, Germany – Operation expected 1/2023

Design, engineering, fabrication and supply, installation and commissioning of charging infrastructure for a depot charging infrastructure at the Britz and Cicero depot.

- 4 charging systems Grid-eMotion™ Fleet containers (2 in each depot) including:
- Medium voltage grid connection
- 12kV switchgear
- 14 x charging points of 75 kW, CCS2 charging stations
- 12kV rated, 1250 kVA rectifier transformer
- 1000 kW rectifier
- 3 x DC-DC charging cabinets with 14 modules of 75 kW
- Single and Dual plug charging stations

Berlin, Germany

Berlin, Germany

Berlin, Germany

Grid Integration | Management Team

General Setup

Leveraging a global Installed Base

Meeting the highest standards across the value chain

Highest reliability starting in our factories

Simplest integration into existing mobility

Delivering solution excellence

Simple and user friendly charging points with minimal space requirements

Modularity allowing for lean installation and maintenance as well as future scale up requirements

Grid-eMotionTM

Digital

Grid-eMotion™

Connect platform

Peace of mind for your equipment - Our integrated customer experience

Grid-eMotion™ Connect

Customer Portal

With Grid-eMotion™ Connect you get access to your equipment (in real-time and historical) and to Hitachi Energy global expertise. The platform is prepared for EMS integration to provide a seamless experience

Grid-eMotion[™]

Remote monitoring

Features:

- Charger(s)
 - Location
 - Status
 - Power
 - Charger Type
 - Charger manufacturer
- **Connector status**
- Alerts and fault codes
- **Energy consumption** and Uptime reports

Data collection & visualization

- Visualized on web portal
- Data stored on cloud
- From assets on site

Remote access

- Remote control of assets
- Quick troubleshooting
- Through VPN

Notifications and alarms

Based on equipment data

Trends and reports

Of operating parameters, power equipment and chargers

Single component overview

Grid-eMotion[™]

Smart Charging

Features:

- Smart Charging
- Pre-conditioning
- Load Balancing
- Priority Charging
- EV SOC Management
- Connected Vehicle
 - ID, SOC, Remaining range
- Transaction History and Indepth Transaction analysis
- Charging Controls
 - Remote Start/stop transactions
 - Remote soft/hard reset

7

Load balancing

- Set maximum peak load and distribute load
- Manage SoC¹ for vehicles
- Integration of BESS, renewables and V2G

Charging scheduling and control

- Schedule optimization
- Custom parameters and scheduling logic
- Controllable through HMI

Interfacing to other systems

- Connection to depot management, telematics
- Essential for fleet operators
- Flexible integration through APIs

Pre-conditioning

- Prepare vehicles ahead of its use
- Valuable function for overnight charging
- Customizable according to customer's needs

Reporting and notifications

- Easy access to data and reports
- Alerts on important alarms and events
- Essential for long-term optimization

Forecasting

- Day-ahead optimization
- Energy price forecasting
- Asset failure prediction

Grid-eMotion™

Connect platform – Integration and Interfaces

- Smart Charging module can be connected to several fleet management solutions via VDV463
- The Remote Monitoring portal is the main interface connecting the smart charging module as well as MQTT signals from the charging infrastructure
- Further integrations needs to be assessed and evaluated with specific digital platform of the operator
- Typical questions to be addressed:
 - o FleetInsight APIs available?
 - O Which system talks to which user?
 - Fleet: face/app to driver? Eg for reservation, delays, status, ...
 - Fuel Billing: Smart Charging transactions are sent to this one
 - Telematics might supply arrival time from charge planning

Grid-eMotionTM

Service Concept

Grid-eMotion[™]

Service Packages

Rapid Response

Fast and flexible service to maximize equipment availability

Maintenance Excellence

Knowledge and expertise to optimize and extend equipment life

Performance optimization

Maximizing efficiency and use of energy with smart charging

Grid-eMotion[™] Charger Monitoring Platform

Solutions

- Office hours or 24/7 response in 10 languages
- Agreed response time for corrective maintenance

- · Rapid Response +
- Preventive Maintenance Execution

- Maintenance Excellence +
- Smart Charging via Charger Monitoring Portal

Benefits

- Faster communication process
- Efficient procurement, product support and mobilization to site

- · High Quality
- Higher reliability with preventive maintenance

- Well-informed maintenance decisions with live data
- Maximize operational efficiency with energy management capability of smart charging

Results

- Higher availability
- Faster failure repairs
- Shorter unplanned outages

- · Optimized maintenance spending
- Early identification of problems
- Failure mitigation
- High quality of maintenance

- Avoided cost of failure
- Avoid unplanned outage
- Lower TCO

Type of agreements

The service offerings for the Grid-eMotion products can be included under different types of SLAs such as commitment on response time and availability. Solutions such as OBC and XaaS can also be offered. We offer fixed/variable fees depending on needs.

Grid-eMotion™

Rapid Response – Service Levels

The Rapid Response offering comes with a variety of levels to meet different customer needs. The levels are organized based on the response offering with Bronze, Silver, Gold and Platinum as options.

	Bronze	Silver	Gold	Platinum
1st line support*	1 h, 24/7	1 h, 24/7	1 h, 24/7	1 h, 24/7
2nd line support	Next business day	l	2 h, business hours 4 h, outside business hours	1 h, business hours 2 h, outside business hours
3rd line support	3 day response	8 h response	4 h response	2 h response
Mobilization time	1 week on site	72 h on site	24 h on site	12 h on site

Support channels

Definition 1st, 2nd and 3rd line support

Tools and services to

enable fast response

1st line

- Diagnostic of error
- Reset of charger
- Involvement of OEM support

2nd line

- Analyse error
- Change spare parts
- Issue analysis and verification

3rd line

- Grid-eMotion factory experts
- Last escalation step

Phone Support

Describe the problem by calling our level 1 support.

Charger Monitoring Portal

For more thorough understanding, all of our support levels can reach your assets remotely

Augmented Reality

With the use of augmented reality (AR) we can get a live visualization through the eyes of someone on site. The service can be used via our app and in any of our support levels

On-site corrective maintenance

Local Hitachi Energy or partners service engineers with right equipment and training respond to site within an agreed time-frame.

@Hitachi Energy

HITACHI Inspire the Next