230 kV LINE DIFFERENTIAL PROTECTION USING SEL-411L AND SEL-311L RELAYS

IEEE Vehicular Technology Society
Philadelphia Chapter
Brandon S. Swartley, P.E.
March 25, 2019
Presentation Topics

1. Introductions
2. Project Overview
3. Existing Protection Schemes
4. Site Photographs
5. Proposed Protection Schemes
6. Technical Presentation of SEL-311L and SEL-411L Relays
Main project objectives:

1. Existing 230 kV line protection schemes use obsolete equipment
 a) Westinghouse LCB II line differential relays with audio tone (primary)
 b) GE CEY line distance relays (backup)
 i. Audio tone transfer trip for distance scheme (normal line)
 ii. Power line carrier and transfer trip (backup line) – uses wave trap

2. Replace existing primary and backup line protection schemes
 a) SEL-411L line differential over fiber optic (primary)
 b) SEL-311L line differential over fiber optic (backup)
Existing Protection Schemes – 230 kV Single-Line Diagram
Existing Protection Schemes – Power Line Carrier Scheme

Fault detector (FD) starts carrier
Directional relay (D) stops carrier
Trip occurs if D operates and no carrier signal is received
Existing Protection Schemes – Pilot Wire Scheme

\[V_A \text{ and } V_B \text{ shown for external fault} \]
Existing Protection Schemes – Metering and Relaying Diagram

Line 220-28

Line 220-42

WJSFC

IEEE VTS Philadelphia Chapter, March 25, 2019
Existing Protection Schemes – Line 220-42

Backup Distance Protection Scheme

Primary Line Current Differential Protection Scheme
Existing Protection Schemes – Line 220-28

- Primary Line Current Differential Protection Scheme
 - Wave trap
 - CCVT
- Backup Distance Protection Scheme

IEEE VTS Philadelphia Chapter, March 25, 2019
Photographs

Line 220-42
West LCB II

Line 220-42
GE Audio Tone

Wayne Junction 230 kV Line Protection

Line 220-28
GE Carrier

Line 220-28
West LCB II